This list of publications closely related to parallel-in-time integration is probably not complete. Please feel free to add any missing publications through a pull request on GitHub .

Statistics

Your screen is too small for the diagram to display.


top

2017

  1. G. L. Kooij, M. A. Botchev, and B. J. Geurts, “A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations,” Journal of Computational and Applied Mathematics, vol. 316, pp. 229–246, 2017 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2016.09.036
    @article{KooijEtAl2017,
      author = {Kooij, G.L. and Botchev, M.A. and Geurts, B.J.},
      doi = {10.1016/j.cam.2016.09.036},
      journal = {Journal of Computational and Applied Mathematics},
      note = {Selected Papers from NUMDIFF-14},
      pages = {229 - 246},
      title = {A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations},
      url = {http://dx.doi.org/10.1016/j.cam.2016.09.036},
      volume = {316},
      year = {2017}
    }
    
  2. D. Ruprecht, “Wave propagation characteristics of Parareal,” arXiv:1701.01359 [math.NA], 2017 [Online]. Available at: https://arxiv.org/abs/1701.01359
    @unpublished{Ruprecht2017,
      author = {Ruprecht, D.},
      title = {Wave propagation characteristics of Parareal},
      howpublished = {arXiv:1701.01359 [math.NA]},
      url = {https://arxiv.org/abs/1701.01359},
      year = {2017}
    }
    
  3. R. Speck and D. Ruprecht, “Toward fault-tolerant parallel-in-time integration with {PFASST} ,” Parallel Computing, vol. 62, pp. 20–37, 2017 [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2016.12.001
    @article{SpeckRuprecht2017,
      author = {Speck, Robert and Ruprecht, Daniel},
      doi = {10.1016/j.parco.2016.12.001},
      journal = {Parallel Computing},
      pages = {20 -- 37},
      title = {Toward fault-tolerant parallel-in-time integration with \{PFASST\} },
      url = {http://dx.doi.org/10.1016/j.parco.2016.12.001},
      volume = {62},
      year = {2017}
    }
    
  4. S.-L. Wu, “Three rapidly convergent parareal solvers with application to time-dependent PDEs with fractional Laplacian,” Mathematical Methods in the Applied Sciences, 2017 [Online]. Available at: http://dx.doi.org/10.1002/mma.4273
    @article{Wu2017,
      author = {Wu, Shu-Lin},
      doi = {10.1002/mma.4273},
      journal = {Mathematical Methods in the Applied Sciences},
      publisher = {John Wiley & Sons, Ltd},
      url = {http://dx.doi.org/10.1002/mma.4273},
      title = {Three rapidly convergent parareal solvers with application to time-dependent PDEs with fractional Laplacian},
      year = {2017}
    }
    
  5. M. Bolten, D. Moser, and R. Speck, “Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems,” arXiv:1703.07120 [math.NA], 2017 [Online]. Available at: https://arxiv.org/abs/1703.07120
    @unpublished{BoltenEtAl2017,
      author = {Bolten, Matthias and Moser, Dieter and Speck, Robert},
      title = {Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems},
      howpublished = {arXiv:1703.07120 [math.NA]},
      url = {https://arxiv.org/abs/1703.07120},
      year = {2017}
    }
    
top

2016

  1. M. Alhubail and Q. Wang, “The swept rule for breaking the latency barrier in time advancing PDEs,” Journal of Computational Physics, vol. 307, pp. 110–121, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2015.11.026
    @article{AlhubailEtAl2016,
      author = {Alhubail, Maitham and Wang, Qiqi},
      doi = {10.1016/j.jcp.2015.11.026},
      journal = {Journal of Computational Physics},
      pages = {110 - 121},
      title = {The swept rule for breaking the latency barrier in time advancing {PDEs}},
      url = {http://dx.doi.org/10.1016/j.jcp.2015.11.026},
      volume = {307},
      year = {2016}
    }
    
  2. M. Astorino, F. Chouly, and A. Quarteroni, “A Time-Parallel Framework for Coupling Finite Element and Lattice Boltzmann Methods,” Applied Mathematics Research eXpress, vol. 2016, no. 1, pp. 24–67, 2016 [Online]. Available at: http://dx.doi.org/10.1093/amrx/abv009
    @article{Astorino2016,
      author = {Astorino, Matteo and Chouly, Franz and Quarteroni, Alfio},
      journal = {Applied Mathematics Research eXpress},
      title = {A Time-Parallel Framework for Coupling Finite Element and Lattice Boltzmann Methods},
      url = {http://dx.doi.org/10.1093/amrx/abv009},
      volume = {2016},
      number = {1},
      pages = {24-67},
      year = {2016}
    }
    
  3. T. Beck, “In-Time Parallelization Of Atmospheric Chemical Kinetics,” PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2016 [Online]. Available at: http://archiv.ub.uni-heidelberg.de/volltextserver/20092/1/TBeck_Phd_a.pdf
    @phdthesis{Beck2016,
      author = {Beck, Teresa},
      title = {In-Time Parallelization Of Atmospheric Chemical Kinetics},
      school = {Ruprecht-Karls-Universit\"{a}t Heidelberg},
      url = {http://archiv.ub.uni-heidelberg.de/volltextserver/20092/1/TBeck_Phd_a.pdf},
      year = {2016}
    }
    
  4. M. Bolten, D. Moser, and R. Speck, “A multigrid perspective on the parallel full approximation scheme in space and time,” arXiv:1603.03586 [math.NA], 2016 [Online]. Available at: http://arxiv.org/abs/1603.03586
    @unpublished{BoltenEtAl2016,
      author = {Bolten, Matthias and Moser, Dieter and Speck, Robert},
      howpublished = {arXiv:1603.03586 [math.NA]},
      title = {A multigrid perspective on the parallel full approximation scheme in space and time},
      url = {http://arxiv.org/abs/1603.03586},
      year = {2016}
    }
    
  5. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-driven time parallelism via forecasting,” arXiv:1610.09049v1 [cs.NA], 2016 [Online]. Available at: https://arxiv.org/pdf/1610.09049.pdf
    @unpublished{CarlbergEtAl2016,
      author = {Carlberg, Kevin and Brencher, Lukas and Haasdonk, Bernard and Barth, Andreas},
      title = {Data-driven time parallelism via forecasting},
      howpublished = {arXiv:1610.09049v1 [cs.NA]},
      url = {https://arxiv.org/pdf/1610.09049.pdf},
      year = {2016}
    }
    
  6. J. H. Chaudhry, D. Estep, S. Tavener, V. Carey, and J. Sandelin, “A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm,” SIAM Journal on Numerical Analysis, vol. 54, no. 5, pp. 2974–3002, 2016 [Online]. Available at: http://dx.doi.org/10.1137/16M1079014
    @article{ChaudryEtAl2016,
      author = {Chaudhry, Jehanzeb Hameed and Estep, Don and Tavener, Simon and Carey, Varis and Sandelin, Jeff},
      title = {A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm},
      journal = {SIAM Journal on Numerical Analysis},
      volume = {54},
      number = {5},
      pages = {2974-3002},
      year = {2016},
      doi = {10.1137/16M1079014},
      url = {http://dx.doi.org/10.1137/16M1079014}
    }
    
  7. F. De Vuyst, “Efficient solvers for time-dependent problems: a review of IMEX, LATIN, PARAEXP and PARAREAL algorithms for heat-type problems with potential use of approximate exponential integrators and reduced-order models,” Advanced Modeling and Simulation in Engineering Sciences, pp. 3–8, 2016 [Online]. Available at: http://dx.doi.org/10.1186/s40323-016-0063-y
    @article{DeVuyst2016,
      author = {De Vuyst, Florian},
      title = {Efficient solvers for time-dependent problems: a review of {IMEX}, {LATIN}, {PARAEXP} and {PARAREAL} algorithms for heat-type problems with potential use of approximate exponential integrators and reduced-order models},
      journal = {Advanced Modeling and Simulation in Engineering Sciences},
      pages = {3--8},
      url = {http://dx.doi.org/10.1186/s40323-016-0063-y},
      year = {2016}
    }
    
  8. V. Dobrev, T. Kolev, N. A. Petersson, and J. Schroder, “TWO-LEVEL CONVERGENCE THEORY FOR PARALLEL TIME INTEGRATION WITH MULTIGRID,” LLNL, 2016 [Online]. Available at: http://computation.llnl.gov/projects/parallel-time-integration-multigrid/mgrit-theory-2016.pdf
    @unpublished{DobrevEtAl2016,
      author = {Dobrev, V. and Kolev, T. and Petersson, N. A. and Schroder, J.},
      title = {TWO-LEVEL CONVERGENCE THEORY FOR PARALLEL TIME INTEGRATION WITH MULTIGRID},
      howpublished = {LLNL},
      url = {http://computation.llnl.gov/projects/parallel-time-integration-multigrid/mgrit-theory-2016.pdf},
      year = {2016}
    }
    
  9. A. Eghbal, A. G. Gerber, and E. Aubanel, “Acceleration of Unsteady Hydrodynamic Simulations Using the Parareal Algorithm,” Journal of Computational Science , p. – , 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jocs.2016.12.006
    @article{EghbalEtAl2016,
      author = {Eghbal, Araz and Gerber, Andrew G. and Aubanel, Eric},
      doi = {10.1016/j.jocs.2016.12.006},
      journal = {Journal of Computational Science },
      number = {},
      pages = { -- },
      title = {Acceleration of Unsteady Hydrodynamic Simulations Using the Parareal Algorithm},
      url = {http://dx.doi.org/10.1016/j.jocs.2016.12.006},
      volume = {},
      year = {2016}
    }
    
  10. R. D. Falgout, T. A. Manteuffel, B. Southworth, and J. B. Schroder, Parallel-In-Time For Moving Meshes. 2016 [Online]. Available at: http://www.osti.gov/scitech/servlets/purl/1239230
    @book{FalgoutEtAl2016,
      author = {Falgout, R. D. and Manteuffel, T. A. and Southworth, B. and Schroder, J. B.},
      doi = {10.2172/1239230},
      title = {Parallel-In-Time For Moving Meshes},
      url = {http://www.osti.gov/scitech/servlets/purl/1239230},
      year = {2016}
    }
    
  11. R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, “MULTIGRID REDUCTION IN TIME FOR NONLINEAR PARABOLIC PROBLEMS,” LLNL, 2016 [Online]. Available at: http://computation.llnl.gov/projects/parallel-time-integration-multigrid/mgrit_nonlinear_2016.pdf
    @unpublished{FalgoutEtAl2016_sisc,
      author = {Falgout, R. D. and Manteuffel, T. A. and O'Neill, B. and Schroder, J. B.},
      title = {MULTIGRID REDUCTION IN TIME FOR NONLINEAR PARABOLIC PROBLEMS},
      howpublished = {LLNL},
      url = {http://computation.llnl.gov/projects/parallel-time-integration-multigrid/mgrit_nonlinear_2016.pdf},
      year = {2016}
    }
    
  12. H. Gahvari, V. A. Dobrev, R. D. Falgout, T. V. Kolev, J. B. Schroder, M. Schulz, and U. Meier Yang, “A Performance Model for Allocating the Parallelism in a Multigrid-in-Time Solver,” in 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems, 2016 [Online]. Available at: http://dx.doi.org/10.1109/PMBS.2016.8
    @inproceedings{GahvariEtAl2016,
      author = {Gahvari, Hormozd and Dobrev, Veselin A. and Falgout, Rob D. and Kolev, Tzanio V. and Schroder, Jacob B. and Schulz, Martin and {Meier Yang}, Ulrike},
      title = {A Performance Model for Allocating the Parallelism in a Multigrid-in-Time Solver},
      booktitle = {7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems},
      doi = {10.1109/PMBS.2016.8},
      url = {http://dx.doi.org/10.1109/PMBS.2016.8},
      year = {2016}
    }
    
  13. M. J. Gander and L. Halpern, “Time Parallelization for Nonlinear Problems Based on Diagonalization,” Preprint, 2016 [Online]. Available at: https://www.unige.ch/ gander/Preprints/Halpern_MS3-1.pdf
    @unpublished{GanderHalpern2016,
      author = {Gander, Martin J. and Halpern, Laurence},
      title = {Time Parallelization for Nonlinear Problems Based on Diagonalization},
      howpublished = {Preprint},
      url = {https://www.unige.ch/~gander/Preprints/Halpern_MS3-1.pdf},
      year = {2016}
    }
    
  14. R. Guetat, “Coupling Parareal with Non-Overlapping Domain Decomposition Method,” hal-01312528, 2016 [Online]. Available at: https://hal.archives-ouvertes.fr/hal-01312528/
    @unpublished{Guetat2016,
      author = {Guetat, Rim},
      howpublished = {hal-01312528},
      url = {https://hal.archives-ouvertes.fr/hal-01312528/},
      title = {Coupling Parareal with Non-Overlapping Domain Decomposition Method},
      year = {2016}
    }
    
  15. T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, “A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator,” IMA Journal of Numerical Analysis, vol. 36, no. 2, pp. 688–716, 2016 [Online]. Available at: http://dx.doi.org/10.1093/imanum/drv021
    @article{Haut2016,
      author = {Haut, T. S. and Babb, T. and Martinsson, P. G. and Wingate, B. A.},
      doi = {10.1093/imanum/drv021},
      journal = {IMA Journal of Numerical Analysis},
      number = {2},
      pages = {688-716},
      title = {A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator},
      url = {http://dx.doi.org/10.1093/imanum/drv021},
      volume = {36},
      year = {2016}
    }
    
  16. A. Lapin and A. Romanenko, “Udzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem,” IOP Conference Series: Materials Science and Engineering, vol. 158, no. 1, p. 012059, 2016 [Online]. Available at: http://dx.doi.org/10.1088/1757-899X/158/1/012059
    @article{LapinEtAl2016,
      author = {Lapin, A and Romanenko, A},
      journal = {IOP Conference Series: Materials Science and Engineering},
      number = {1},
      pages = {012059},
      title = {Udzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem},
      url = {http://dx.doi.org/10.1088/1757-899X/158/1/012059},
      volume = {158},
      year = {2016}
    }
    
  17. M. Lecouvez, R. Falgout, C. Woodward, and P. Top, “A Parallel Multigrid Reduction in Time Method for Power Systems,” LLNL-CONF-679148, 2016 [Online]. Available at: http://www.osti.gov/scitech/biblio/1281664
    @unpublished{LecouvezEtAl2016,
      author = {Lecouvez, M. and Falgout, R. and Woodward, C. and Top, P.},
      title = {A Parallel Multigrid Reduction in Time Method for Power Systems},
      howpublished = {LLNL-CONF-679148},
      url = {http://www.osti.gov/scitech/biblio/1281664},
      year = {2016}
    }
    
  18. C. Lederman, R. Martin, and J.-L. Cambier, “Time-parallel solutions to differential equations via functional optimization,” Computational and Applied Mathematics, pp. 1–25, 2016 [Online]. Available at: http://dx.doi.org/10.1007/s40314-016-0319-7
    @article{Lederman2016,
      author = {Lederman, C. and Martin, R. and Cambier, J.-L.},
      title = {Time-parallel solutions to differential equations via functional optimization},
      journal = {Computational and Applied Mathematics},
      year = {2016},
      pages = {1--25},
      doi = {10.1007/s40314-016-0319-7},
      url = {http://dx.doi.org/10.1007/s40314-016-0319-7}
    }
    
  19. J. I. Leffell, J. Sitaraman, V. K. Lakshminarayan, and A. M. Wissink, “Towards Efficient Parallel-in-Time Simulation of Periodic Flows,” in 54th AIAA Aerospace Sciences Meeting, 2016 [Online]. Available at: http://dx.doi.org/10.2514/6.2016-0066
    @inproceedings{LeffellEtAl2016,
      author = {Leffell, Joshua I. and Sitaraman, Jayanarayanan and Lakshminarayan, Vinod K. and Wissink, Andrew M.},
      booktitle = {54th AIAA Aerospace Sciences Meeting},
      title = {Towards Efficient Parallel-in-Time Simulation of Periodic Flows},
      doi = {10.2514/6.2016-0066},
      url = {http://dx.doi.org/10.2514/6.2016-0066},
      publisher = {American Institute of Aeronautics and Astronautics},
      year = {2016}
    }
    
  20. S. Matsuoka, H. Amano, K. Nakajima, K. Inoue, T. Kudoh, N. Maruyama, K. Taura, T. Iwashita, T. Katagiri, T. Hanawa, and T. Endo, “From FLOPS to BYTES: Disruptive Change in High-performance Computing Towards the Post-moore Era,” in Proceedings of the ACM International Conference on Computing Frontiers, New York, NY, USA, 2016, pp. 274–281 [Online]. Available at: http://dx.doi.org/10.1145/2903150.2906830
    @inproceedings{MatsuokaEtAl2016,
      author = {Matsuoka, Satoshi and Amano, Hideharu and Nakajima, Kengo and Inoue, Koji and Kudoh, Tomohiro and Maruyama, Naoya and Taura, Kenjiro and Iwashita, Takeshi and Katagiri, Takahiro and Hanawa, Toshihiro and Endo, Toshio},
      title = {From FLOPS to BYTES: Disruptive Change in High-performance Computing Towards the Post-moore Era},
      booktitle = {Proceedings of the ACM International Conference on Computing Frontiers},
      series = {CF '16},
      year = {2016},
      location = {Como, Italy},
      pages = {274--281},
      numpages = {8},
      url = {http://dx.doi.org/10.1145/2903150.2906830},
      doi = {10.1145/2903150.2906830},
      publisher = {ACM},
      address = {New York, NY, USA}
    }
    
  21. M. Merkel, I. Niyonzima, and S. Schöps, “An Application of ParaExp to Electromagnetic Wave Problems,” arXiv:1607.00368 [math.NA], 2016 [Online]. Available at: http://arxiv.org/abs/1607.00368
    @unpublished{MerkelEtAl2016,
      author = {Merkel, Melina and Niyonzima, Innocent and Sch\"ops, Sebastian},
      howpublished = {arXiv:1607.00368 [math.NA]},
      title = {An Application of ParaExp to Electromagnetic Wave Problems},
      url = {http://arxiv.org/abs/1607.00368},
      year = {2016}
    }
    
  22. M. J. Gander and M. Neumüller, “Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems,” SIAM Journal on Scientific Computing, vol. 38, no. 4, pp. A2173–A2208, 2016 [Online]. Available at: http://dx.doi.org/10.1137/15M1046605
    @article{NeumuellerGander2016,
      author = {Gander, Martin J. and Neum\"uller, Martin},
      title = {Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems},
      journal = {SIAM Journal on Scientific Computing},
      volume = {38},
      number = {4},
      pages = {A2173-A2208},
      year = {2016},
      doi = {10.1137/15M1046605},
      url = {http://dx.doi.org/10.1137/15M1046605}
    }
    
  23. A. S. Nielsen and J. S. Hesthaven, “Fault Tolerance in the Parareal Method,” in Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale, New York, NY, USA, 2016, pp. 1–8 [Online]. Available at: http://dx.doi.org/10.1145/2909428.2909431
    @inproceedings{NielsenHesthaven2016,
      author = {Nielsen, Allan S. and Hesthaven, Jan S.},
      title = {Fault Tolerance in the Parareal Method},
      booktitle = {Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale},
      series = {FTXS '16},
      year = {2016},
      isbn = {978-1-4503-4349-7},
      location = {Kyoto, Japan},
      pages = {1--8},
      numpages = {8},
      url = {http://dx.doi.org/10.1145/2909428.2909431},
      doi = {10.1145/2909428.2909431},
      acmid = {2909431},
      publisher = {ACM},
      address = {New York, NY, USA}
    }
    
  24. B. W. Ong, R. D. Haynes, and K. Ladd, “Algorithm 965: RIDC Methods: A Family of Parallel Time Integrators,” ACM Trans. Math. Softw., vol. 43, no. 1, pp. 8:1–8:13, 2016 [Online]. Available at: http://dx.doi.org/10.1145/2964377
    @article{OngEtAl2016,
      author = {Ong, Benjamin W. and Haynes, Ronald D. and Ladd, Kyle},
      articleno = {8},
      doi = {10.1145/2964377},
      title = {Algorithm 965: {RIDC} Methods: A Family of Parallel Time Integrators},
      journal = {ACM Trans. Math. Softw.},
      number = {1},
      numpages = {13},
      pages = {8:1--8:13},
      url = {http://dx.doi.org/10.1145/2964377},
      volume = {43},
      year = {2016}
    }
    
  25. G. Pages, O. Pironneau, and G. Sall, “The Parareal Algorithm for American Options,” hal-01320331, 2016 [Online]. Available at: http://hal.upmc.fr/hal-01320331
    @unpublished{PagesEtAl2016,
      author = {Pages, Gilles and Pironneau, Olivier and Sall, Guillaume},
      title = {The Parareal Algorithm for American Options},
      howpublished = {hal-01320331},
      url = {http://hal.upmc.fr/hal-01320331},
      year = {2016}
    }
    
  26. D. Ruprecht, R. Speck, and R. Krause, “Parareal for Diffusion Problems with Space- and Time-Dependent Coefficients,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, pp. 371–378 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-18827-0_37
    @inproceedings{RuprechtEtAl2016,
      author = {Ruprecht, Daniel and Speck, Robert and Krause, Rolf},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXII}},
      doi = {10.1007/978-3-319-18827-0_37},
      editor = {Dickopf, Thomas and Gander, J. Martin and Halpern, Laurence and Krause, Rolf and Pavarino, F. Luca},
      pages = {371--378},
      publisher = {Springer International Publishing},
      url = {http://dx.doi.org/10.1007/978-3-319-18827-0_37},
      title = {Parareal for Diffusion Problems with Space- and Time-Dependent Coefficients},
      year = {2016}
    }
    
  27. M. Schreiber, P. S. Peixoto, T. Haut, and B. Wingate, “Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems,” 2016 [Online]. Available at: http://www.ime.usp.br/%7epedrosp/wp/wordpress/wp-content/uploads/2015/05/paper_2016_rexi_hpc.pdf
    @unpublished{SchreiberEtAl2016,
      author = {Schreiber, Martin and Peixoto, Pedro S. and Haut, Terry and Wingate, Beth},
      title = {Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems},
      url = {http://www.ime.usp.br/%7epedrosp/wp/wordpress/wp-content/uploads/2015/05/paper_2016_rexi_hpc.pdf},
      year = {2016}
    }
    
  28. T. Sekine, T. Tsuji, T. Oyama, F. Magoulès, and K. Uchida, “Speedup of parallel computing by parareal method in transient stability analysis of Japanese power system,” in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), 2016, pp. 1177–1182 [Online]. Available at: http://dx.doi.org/10.1109/ISGT-Asia.2016.7796552
    @inproceedings{SekineEtAl2016,
      author = {Sekine, T. and Tsuji, T. and Oyama, T. and Magoulès, F. and Uchida, K.},
      booktitle = {2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia)},
      doi = {10.1109/ISGT-Asia.2016.7796552},
      pages = {1177-1182},
      title = {Speedup of parallel computing by parareal method in transient stability analysis of Japanese power system},
      url = {http://dx.doi.org/10.1109/ISGT-Asia.2016.7796552},
      year = {2016}
    }
    
  29. S.-L. Wu, “A second-order parareal algorithm for fractional PDEs,” Journal of Computational Physics, vol. 307, pp. 280–290, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2015.12.007
    @article{Wu2016,
      title = {A second-order parareal algorithm for fractional {PDEs}},
      journal = {Journal of Computational Physics},
      volume = {307},
      pages = {280 -- 290},
      year = {2016},
      url = {http://dx.doi.org/10.1016/j.jcp.2015.12.007},
      doi = {10.1016/j.jcp.2015.12.007},
      author = {Wu, Shu-Lin}
    }
    
  30. S.-L. Wu, “Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues,” Journal of Scientific Computing, vol. 67, no. 2, pp. 644–668, 2016 [Online]. Available at: http://dx.doi.org/10.1007/s10915-015-0100-x
    @article{Wu2016_JSC,
      author = {Wu, Shu-Lin},
      doi = {10.1007/s10915-015-0100-x},
      journal = {Journal of Scientific Computing},
      number = {2},
      pages = {644--668},
      title = {Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues},
      url = {http://dx.doi.org/10.1007/s10915-015-0100-x},
      volume = {67},
      year = {2016}
    }
    
  31. S.-L. Wu, “Towards essential improvement for the Parareal-TR and Parareal-Gauss4 algorithms,” Journal of Computational and Applied Mathematics, vol. 308, pp. 391–407, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2016.05.036
    @article{Wu2016_JCAM,
      author = {Wu, Shu-Lin},
      doi = {10.1016/j.cam.2016.05.036},
      journal = {Journal of Computational and Applied Mathematics},
      pages = {391 - 407},
      title = {Towards essential improvement for the Parareal-TR and Parareal-Gauss4 algorithms},
      url = {http://dx.doi.org/10.1016/j.cam.2016.05.036},
      volume = {308},
      year = {2016}
    }
    
  32. S.-L. Wu and T. Zhou, “Fast parareal iterations for fractional diffusion equations,” Journal of Computational Physics, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2016.10.046
    @article{WuZhou2016_JCP,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1016/j.jcp.2016.10.046},
      journal = {Journal of Computational Physics},
      number = {},
      pages = {},
      title = {Fast parareal iterations for fractional diffusion equations},
      url = {http://dx.doi.org/10.1016/j.jcp.2016.10.046},
      volume = {},
      year = {2016}
    }
    
  33. L. Zhang, W. Zhou, and J. Hong, “Parareal algorithms applied to stochastic differential equations with conserved quantities,” arXiv:1609.08299v1 [math.NA] , 2016 [Online]. Available at: https://arxiv.org/pdf/1609.08299.pdf
    @unpublished{ZhangEtAl2016,
      author = {Zhang, Liying and Zhou, Weien and Hong, Jialin},
      title = {Parareal algorithms applied to stochastic differential equations with conserved quantities},
      howpublished = {arXiv:1609.08299v1 [math.NA] },
      url = {https://arxiv.org/pdf/1609.08299.pdf},
      year = {2016}
    }
    
top

2015

  1. G. Ariel, S. J. Kim, and R. Tsai, “Parareal methods for highly oscillatory ordinary differential equations.” arXiv:1503.02094 [math.NA], 2015 [Online]. Available at: http://arxiv.org/abs/1503.02094v1
    @misc{Ariel2015,
      author = {Ariel, G. and Kim, Seong Jun and Tsai, Richard},
      howpublished = {arXiv:1503.02094 [math.NA]},
      title = {{Parareal methods for highly oscillatory ordinary differential equations}},
      url = {http://arxiv.org/abs/1503.02094v1},
      year = {2015}
    }
    
  2. A. Arteaga, D. Ruprecht, and R. Krause, “A stencil-based implementation of Parareal in the C++ domain specific embedded language STELLA,” Applied Mathematics and Computation, vol. 267, pp. 727–741, 2015 [Online]. Available at: http://dx.doi.org/10.1016/j.amc.2014.12.055
    @article{ArteagaEtAl2015,
      author = {Arteaga, A. and Ruprecht, Daniel and Krause, Rolf},
      journal = {Applied Mathematics and Computation},
      volume = {267},
      pages = {727--741},
      title = {{A stencil-based implementation of Parareal in the {C++} domain specific embedded language {STELLA}}},
      url = {http://dx.doi.org/10.1016/j.amc.2014.12.055},
      year = {2015}
    }
    
  3. M. Bedez, Z. Belhachmi, O. Haeberlé, R. Greget, S. Moussaoui, J.-M. Bouteiller, and S. Bischoff, “A fully parallel in time and space algorithm for simulating the electrical activity of a neural tissue,” Journal of Neuroscience Methods, 2015 [Online]. Available at: http://dx.doi.org/10.1016/j.jneumeth.2015.09.017
    @article{Bedez2015,
      author = {Bedez, Mathieu and Belhachmi, Zakaria and Haeberl\'e, Olivier and Greget, Renaud and Moussaoui, Saliha and Bouteiller, Jean-Marie and Bischoff, Serge},
      journal = {{Journal of Neuroscience Methods}},
      number = {},
      note = {in press},
      pages = {},
      title = {A fully parallel in time and space algorithm for simulating the electrical activity of a neural tissue},
      url = {http://dx.doi.org/10.1016/j.jneumeth.2015.09.017},
      volume = {},
      year = {2015}
    }
    
  4. L. Carracciuolo, L. D’Amore, and V. Mele, “Toward a fully parallel multigrid in time algorithm in PETSc environment: A case study in ocean models,” in High Performance Computing Simulation (HPCS), 2015 International Conference on, 2015, pp. 595–598 [Online]. Available at: http://dx.doi.org/10.1109/HPCSim.2015.7237098
    @inproceedings{CarracciuoloEtAl2015,
      author = {Carracciuolo, L. and D'Amore, L. and Mele, V.},
      booktitle = {High Performance Computing Simulation (HPCS), 2015 International Conference on},
      pages = {595-598},
      title = {Toward a fully parallel multigrid in time algorithm in PETSc environment: A case study in ocean models},
      url = {http://dx.doi.org/10.1109/HPCSim.2015.7237098},
      year = {2015}
    }
    
  5. A. J. Christlieb, C. B. MacDonald, B. W. Ong, and R. J. Spiteri, “Revisionist integral deferred correction with adaptive step-size control,” Communications in Applied Mathematics and Computational Science, vol. 10, no. 1, pp. 1–25, 2015 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2015.10.1
    @article{ChristliebEtAl2015,
      author = {Christlieb, Andrew J. and MacDonald, Colin B. and Ong, Benjaming W. and Spiteri, Raymond J.},
      title = {Revisionist integral deferred correction with adaptive step-size control},
      journal = {Communications in Applied Mathematics and Computational Science},
      volume = {10},
      issue = {1},
      pages = {1--25},
      year = {2015},
      url = {http://dx.doi.org/10.2140/camcos.2015.10.1}
    }
    
  6. R. D. Falgout, S. Friedhoff, T. Z. Kolev, S. P. MacLachlan, J. Schroder, and S. Vandewalle, “Multigrid methods with space-time concurrency,” 2015 [Online]. Available at: http://computation.llnl.gov/project/linear_solvers/pubs/pit-mg-space-time-2015.pdf
    @unpublished{FalgoutEtAl2015,
      author = {Falgout, RD and Friedhoff, Stephanie and Kolev, TZ and MacLachlan, SP and Schroder, J and Vandewalle, Stefan},
      title = {Multigrid methods with space-time concurrency},
      url = {http://computation.llnl.gov/project/linear_solvers/pubs/pit-mg-space-time-2015.pdf},
      year = {2015}
    }
    
  7. F. Chen, J. S. Hesthaven, Y. Maday, and A. S. Nielsen, “An Adjoint Approach for Stabilizing the Parareal Method,” EPFL-ARTICLE-211097, 2015 [Online]. Available at: http://infoscience.epfl.ch/record/211097
    @unpublished{FengEtAl2015,
      author = {Chen, Feng and Hesthaven, Jan S. and Maday, Yvon and Nielsen, Allan S.},
      howpublished = {EPFL-ARTICLE-211097},
      title = {An Adjoint Approach for Stabilizing the Parareal Method},
      url = {http://infoscience.epfl.ch/record/211097},
      year = {2015}
    }
    
  8. M. J. Gander, “50 years of Time Parallel Time Integration,” in Multiple Shooting and Time Domain Decomposition, Springer, 2015 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-23321-5_3
    @incollection{Gander2015_Review,
      author = {Gander, Martin J.},
      booktitle = {Multiple Shooting and Time Domain Decomposition},
      editors = {Carraro, T. and Geiger, M. and K\"orkel, S. and Rannacher, R.},
      publisher = {Springer},
      title = {{50 years of Time Parallel Time Integration}},
      url = {http://dx.doi.org/10.1007/978-3-319-23321-5_3},
      year = {2015}
    }
    
  9. G. Gurrala, A. Dimitrovski, P. Sreekanth, S. Simunovic, and M. Starke, “Parareal in Time for Dynamic Simulations of Power Systems,” in Proceedings of the International Conference on Power Systems Transients (IPST2015) in Cavtat, Croatia June 15-18, 2015, 2015 [Online]. Available at: http://www.ipstconf.org/papers/Proc_IPST2015/15IPST073.pdf
    @inproceedings{GurralaEtAl2015,
      author = {Gurrala, Gurunath and Dimitrovski, Aleksandar and Sreekanth, Pannala and Simunovic, Srdjan and Starke, Michael},
      booktitle = {{Proceedings of the International Conference on Power Systems Transients (IPST2015) in Cavtat, Croatia June 15-18, 2015}},
      title = {{Parareal in Time for Dynamic Simulations of Power Systems}},
      url = {http://www.ipstconf.org/papers/Proc_IPST2015/15IPST073.pdf},
      year = {2015}
    }
    
  10. T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, “A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator,” IMA Journal of Numerical Analysis, 2015 [Online]. Available at: http://dx.doi.org/10.1093/imanum/drv021
    @article{HautEtAl2015,
      author = {Haut, T. S. and Babb, T. and Martinsson, P. G. and Wingate, B. A.},
      doi = {10.1093/imanum/drv021},
      journal = {IMA Journal of Numerical Analysis},
      url = {http://dx.doi.org/10.1093/imanum/drv021},
      title = {A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator},
      year = {2015}
    }
    
  11. A. Kreienbuehl, A. Naegel, D. Ruprecht, R. Speck, G. Wittum, and R. Krause, “Numerical simulation of skin transport using Parareal,” Computing and Visualization in Science, vol. 17, no. 2, pp. 99–108, 2015 [Online]. Available at: http://dx.doi.org/10.1007/s00791-015-0246-y
    @article{KreienbuehlEtAl2015,
      author = {Kreienbuehl, Andreas and Naegel, Arne and Ruprecht, Daniel and Speck, Robert and Wittum, Gabriel and Krause, Rolf},
      issue = {2},
      journal = {Computing and Visualization in Science},
      pages = {99--108},
      title = {{Numerical simulation of skin transport using Parareal}},
      url = {http://dx.doi.org/10.1007/s00791-015-0246-y},
      volume = {17},
      year = {2015}
    }
    
  12. M. L. Minion, R. Speck, M. Bolten, M. Emmett, and D. Ruprecht, “Interweaving PFASST and parallel multigrid,” SIAM Journal on Scientific Computing, vol. 37, no. 5, pp. S244–S263, 2015 [Online]. Available at: http://dx.doi.org/10.1137/14097536X
    @article{MinionEtAl2015,
      author = {Minion, Michael L. and Speck, Robert and Bolten, Matthias and Emmett, Matthew and Ruprecht, Daniel},
      journal = {{SIAM} Journal on Scientific Computing},
      issue = {5},
      pages = {S244 -- S263},
      title = {{Interweaving {PFASST} and parallel multigrid}},
      url = {http://dx.doi.org/10.1137/14097536X},
      volume = {37},
      year = {2015}
    }
    
  13. D. Perez, E. D. Cubuk, A. Waterland, E. Kaxiras, and A. F. Voter, “Long-time dynamics through parallel trajectory splicing,” Journal of Chemical Theory and Computation, 2015 [Online]. Available at: http://dx.doi.org/10.1021/acs.jctc.5b00916
    @article{PerezEtAl2015,
      author = {Perez, Danny and Cubuk, Ekin Dogus and Waterland, Amos and Kaxiras, Efthimios and Voter, Arthur F.},
      doi = {10.1021/acs.jctc.5b00916},
      journal = {Journal of Chemical Theory and Computation},
      title = {Long-time dynamics through parallel trajectory splicing},
      url = {http://dx.doi.org/10.1021/acs.jctc.5b00916},
      year = {2015}
    }
    
  14. D. Ruprecht, “A shared memory implementation of pipelined Parareal,” arXiv:1509.06935 [cs.MS], 2015 [Online]. Available at: http://arxiv.org/abs/1509.06935
    @unpublished{Ruprecht2015,
      author = {Ruprecht, Daniel},
      howpublished = {arXiv:1509.06935 [cs.MS]},
      title = {{A shared memory implementation of pipelined Parareal}},
      url = {http://arxiv.org/abs/1509.06935},
      year = {2015}
    }
    
  15. T. D. Scheibe, E. M. Murphy, X. Chen, A. K. Rice, K. C. Carroll, B. J. Palmer, A. M. Tartakovsky, I. Battiato, and B. D. Wood, “An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods,” Groundwater, vol. 53, no. 1, pp. 38–56, 2015 [Online]. Available at: http://dx.doi.org/10.1111/gwat.12179
    @article{Scheibe2015,
      author = {Scheibe, Timothy D. and Murphy, Ellyn M. and Chen, Xingyuan and Rice, Amy K. and Carroll, Kenneth C. and Palmer, Bruce J. and Tartakovsky, Alexandre M. and Battiato, Ilenia and Wood, Brian D.},
      journal = {Groundwater},
      number = {1},
      pages = {38--56},
      title = {{An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods}},
      url = {http://dx.doi.org/10.1111/gwat.12179},
      volume = {53},
      year = {2015}
    }
    
  16. M. Schreiber, A. Peddle, T. Haut, and B. Wingate, “A Decentralized Parallelization-in-Time Approach with Parareal,” arXiv:1506.05157 [cs.DC], 2015 [Online]. Available at: http://arxiv.org/abs/1506.05157
    @unpublished{SchreiberEtAl2015,
      author = {Schreiber, Martin and Peddle, Adam and Haut, Terry and Wingate, Beth},
      howpublished = {arXiv:1506.05157 [cs.DC]},
      title = {A Decentralized Parallelization-in-Time Approach with Parareal},
      year = {2015},
      url = {http://arxiv.org/abs/1506.05157}
    }
    
  17. B. Song and Y.-L. Jiang, “A new parareal waveform relaxation algorithm for time-periodic problems,” International Journal of Computer Mathematics, vol. 92, no. 2, pp. 377–393, 2015 [Online]. Available at: http://dx.doi.org/10.1080/00207160.2014.891734
    @article{Song2015,
      author = {Song, Bo and Jiang, Yao-Lin},
      journal = {International Journal of Computer Mathematics},
      number = {2},
      pages = {377--393},
      title = {{A new parareal waveform relaxation algorithm for time-periodic problems}},
      url = {http://dx.doi.org/10.1080/00207160.2014.891734},
      volume = {92},
      year = {2015}
    }
    
  18. R. Speck, D. Ruprecht, M. Emmett, M. L. Minion, M. Bolten, and R. Krause, “A multi-level spectral deferred correction method,” BIT Numerical Mathematics, vol. 55, no. 3, pp. 843–867, 2015 [Online]. Available at: http://dx.doi.org/10.1007/s10543-014-0517-x
    @article{SpeckEtAl2015_BIT,
      author = {Speck, Robert and Ruprecht, Daniel and Emmett, Matthew and Minion, Michael L. and Bolten, Matthias and Krause, Rolf},
      issue = {3},
      journal = {{BIT} Numerical Mathematics},
      pages = {843--867},
      title = {{A multi-level spectral deferred correction method}},
      url = {http://dx.doi.org/10.1007/s10543-014-0517-x},
      year = {2015},
      volume = {55}
    }
    
  19. J. Steiner, D. Ruprecht, R. Speck, and R. Krause, “Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number,” in Numerical Mathematics and Advanced Applications - ENUMATH 2013, vol. 103, A. Abdulle, S. Deparis, D. Kressner, F. Nobile, and M. Picasso, Eds. Springer International Publishing, 2015, pp. 195–202 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-10705-9_19
    @incollection{SteinerEtAl2015,
      author = {Steiner, J. and Ruprecht, Daniel and Speck, Robert and Krause, Rolf},
      booktitle = {{Numerical Mathematics and Advanced Applications - ENUMATH 2013}},
      editor = {Abdulle, Assyr and Deparis, Simone and Kressner, Daniel and Nobile, Fabio and Picasso, Marco},
      pages = {195--202},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Convergence of {P}arareal for the {N}avier-{S}tokes equations depending on the {R}eynolds number}},
      url = {http://dx.doi.org/10.1007/978-3-319-10705-9_19},
      volume = {103},
      year = {2015}
    }
    
  20. Z. Wang and S.-L. Wu, “Parareal Algorithms Implemented with IMEX Runge-Kutta Methods,” Mathematical Problems in Engineering, vol. 2015, 2015 [Online]. Available at: http://dx.doi.org/10.1155/2015/395340
    @article{Wang2015,
      author = {Wang, Zhiyong and Wu, Shu-Lin},
      journal = {Mathematical Problems in Engineering},
      title = {{Parareal Algorithms Implemented with {IMEX} Runge-Kutta Methods}},
      url = {http://dx.doi.org/10.1155/2015/395340},
      volume = {2015},
      year = {2015}
    }
    
  21. S.-L. Wu and T. Zhou, “Convergence Analysis for Three Parareal Solvers,” SIAM Journal on Scientific Computing, vol. 37, no. 2, pp. A970–A992, 2015 [Online]. Available at: http://dx.doi.org/10.1137/140970756
    @article{Wu2015,
      author = {Wu, Shu-Lin and Zhou, Tao},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {A970--A992},
      title = {{Convergence Analysis for Three Parareal Solvers}},
      url = {http://dx.doi.org/10.1137/140970756},
      volume = {37},
      year = {2015}
    }
    
  22. S.-L. Wu, “Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues,” Journal of Scientific Computing, pp. 1–25, 2015 [Online]. Available at: http://dx.doi.org/10.1007/s10915-015-0100-x
    @article{Wu2015b,
      author = {Wu, Shu-Lin},
      doi = {10.1007/s10915-015-0100-x},
      journal = {Journal of Scientific Computing},
      pages = {1--25},
      title = {Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues},
      url = {http://dx.doi.org/10.1007/s10915-015-0100-x},
      year = {2015}
    }
    
top

2014

  1. P. Arbenz, D. Hupp, and D. Obrist, “A Parallel Solver for the Time-Periodic Navier-Stokes Equations,” in Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg, 2014, pp. 291–300 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-55195-6_27
    @incollection{ArbenzEtAl2014,
      author = {Arbenz, Peter and Hupp, Daniel and Obrist, Dominik},
      booktitle = {{Parallel Processing and Applied Mathematics}},
      editor = {Wyrzykowski, Roman and Dongarra, Jack and Karczewski, Konrad and Waśniewski, Jerzy},
      pages = {291--300},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{A Parallel Solver for the Time-Periodic {N}avier-{S}tokes Equations}},
      url = {http://dx.doi.org/10.1007/978-3-642-55195-6_27},
      year = {2014}
    }
    
  2. A. T. Barker, “A minimal communication approach to parallel time integration,” International Journal of Computer Mathematics, vol. 91, no. 3, pp. 601–615, 2014 [Online]. Available at: http://dx.doi.org/10.1080/00207160.2013.800193
    @article{Barker2014,
      author = {Barker, Andrew T.},
      issue = {3},
      journal = {International Journal of Computer Mathematics},
      pages = {601--615},
      title = {{A minimal communication approach to parallel time integration}},
      url = {http://dx.doi.org/10.1080/00207160.2013.800193},
      volume = {91},
      year = {2014}
    }
    
  3. A.-M. Baudron, J.-J. Lautard, Y. Maday, and O. Mula, “The parareal in time algorithm applied to the kinetic neutron diffusion equation,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, pp. 437–445 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_41
    @inproceedings{BaudronEtAl2014_DDM,
      author = {Baudron, Anne-Marie and Lautard, Jean-Jacques and Maday, Yvon and Mula, Olga},
      booktitle = {{Domain Decomposition Methods in Science and Engineering XXI}},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {437--445},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{The parareal in time algorithm applied to the kinetic neutron diffusion equation}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_41},
      year = {2014}
    }
    
  4. A.-M. Baudron, J.-J. Lautard, Y. Maday, M. K. Riahi, and J. Salomon, “Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model,” Journal of Computational Physics, vol. 279, no. 0, pp. 67–79, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2014.08.037
    @article{Baudron2014,
      author = {Baudron, Anne-Marie and Lautard, Jean-Jacques and Maday, Yvon and Riahi, Mohamed Kamel and Salomon, Julien},
      journal = {Journal of Computational Physics},
      number = {0},
      pages = {67--79},
      title = {{Parareal in time 3D numerical solver for the {LWR} Benchmark neutron diffusion transient model}},
      url = {http://dx.doi.org/10.1016/j.jcp.2014.08.037},
      volume = {279},
      year = {2014}
    }
    
  5. S. Bu and J.-Y. Lee, “An enhanced parareal algorithm based on the deferred correction methods for a stiff system,” Journal of Computational and Applied Mathematics, vol. 255, no. 0, pp. 297–305, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2013.05.001
    @article{BuLee2014,
      author = {Bu, Sunyoung and Lee, June-Yub},
      journal = {Journal of Computational and Applied Mathematics},
      number = {0},
      pages = {297--305},
      title = {{An enhanced parareal algorithm based on the deferred correction methods for a stiff system}},
      url = {http://dx.doi.org/10.1016/j.cam.2013.05.001},
      volume = {255},
      year = {2014}
    }
    
  6. J. J. Caceres Silva, B. Baran, and C. E. Schaerer, “Implementation of a distributed parallel in time scheme using PETSc for a parabolic optimal control problem,” in Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on, 2014, pp. 577–586 [Online]. Available at: http://dx.doi.org/10.15439/2014F340
    @inproceedings{Caceres2014,
      author = {{Caceres Silva}, J. J. and Baran, B. and Schaerer, Christian E.},
      booktitle = {{Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on}},
      pages = {577--586},
      title = {{Implementation of a distributed parallel in time scheme using {PETSc} for a parabolic optimal control problem}},
      url = {http://dx.doi.org/10.15439/2014F340},
      year = {2014}
    }
    
  7. F. Chen, J. S. Hesthaven, and X. Zhu, “On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method,” in Reduced Order Methods for Modeling and Computational Reduction, vol. 9, A. Quarteroni and G. Rozza, Eds. Springer International Publishing, 2014, pp. 187–214 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-02090-7_7
    @incollection{ChenEtAl2014,
      author = {Chen, Feng and Hesthaven, Jan S. and Zhu, Xueyu},
      booktitle = {{Reduced Order Methods for Modeling and Computational Reduction}},
      editor = {Quarteroni, Alfio and Rozza, Gianluigi},
      pages = {187--214},
      publisher = {Springer International Publishing},
      series = {{MS\&A - Modeling, Simulation and Applications}},
      title = {{On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method}},
      url = {http://dx.doi.org/10.1007/978-3-319-02090-7_7},
      volume = {9},
      year = {2014}
    }
    
  8. F. Chouly and A. Lozinski, “Parareal multi-model numerical zoom for parabolic multiscale problems,” Comptes Rendus Mathematique, vol. 352, no. 6, pp. 535–540, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.crma.2014.03.018
    @article{Chouly2014,
      author = {Chouly, Franz and Lozinski, Alexei},
      issn = {1631-073X},
      journal = {Comptes Rendus Mathematique},
      number = {6},
      pages = {535--540},
      title = {{Parareal multi-model numerical zoom for parabolic multiscale problems}},
      url = {http://dx.doi.org/10.1016/j.crma.2014.03.018},
      volume = {352},
      year = {2014}
    }
    
  9. R. Croce, D. Ruprecht, and R. Krause, “Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow,” in Modeling, Simulation and Optimization of Complex Processes – HPSC 2012, H. G. Bock, X. P. Hoang, R. Rannacher, and J. P. Schlöder, Eds. Springer International Publishing, 2014, pp. 13–23 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-09063-4_2
    @incollection{CroceEtAl2014,
      author = {Croce, Roberto and Ruprecht, Daniel and Krause, Rolf},
      booktitle = {{Modeling, Simulation and Optimization of Complex Processes -- {HPSC} 2012}},
      editor = {Bock, Hans Georg and Hoang, Xuan Phu and Rannacher, Rolf and Schlöder, Johannes P.},
      pages = {13--23},
      publisher = {Springer International Publishing},
      title = {{Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady {N}avier-{S}tokes Equations for Incompressible Flow}},
      url = {http://dx.doi.org/10.1007/978-3-319-09063-4_2},
      year = {2014}
    }
    
  10. J. Dongarra and al., “Applied Mathematics Research for Exascale Computing,” Lawrence Livermore National Laboratory, LLNL-TR-651000, 2014 [Online]. Available at: http://science.energy.gov/%7E/media/ascr/pdf/research/am/docs/EMWGreport.pdf
    @techreport{DongarraEtAl2014,
      author = {Dongarra, J. and al.},
      institution = {Lawrence Livermore National Laboratory},
      number = {LLNL-TR-651000},
      title = {{Applied Mathematics Research for Exascale Computing}},
      url = {{http://science.energy.gov/%7E/media/ascr/pdf/research/am/docs/EMWGreport.pdf}},
      year = {2014}
    }
    
  11. M. Emmett and M. L. Minion, “Efficient implementation of a multi-level parallel in time algorithm,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 359–366 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_33
    @inproceedings{EmmettMinion2014_DDM,
      author = {Emmett, Matthew and Minion, Michael L.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering XXI}},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {359--366},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Efficient implementation of a multi-level parallel in time algorithm}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_33},
      volume = {98},
      year = {2014}
    }
    
  12. R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, “Parallel time integration with multigrid,” SIAM Journal on Scientific Computing, vol. 36, no. 6, pp. C635–C661, 2014 [Online]. Available at: http://dx.doi.org/10.1137/130944230
    @article{FalgoutEtAl2014_MGRIT,
      author = {Falgout, R. D. and Friedhoff, S. and Kolev, Tz. V. and MacLachlan, Scott P. and Schroder, Jacob B.},
      issue = {6},
      journal = {SIAM Journal on Scientific Computing},
      pages = {C635--C661},
      title = {{Parallel time integration with multigrid}},
      url = {http://dx.doi.org/10.1137/130944230},
      volume = {36},
      year = {2014}
    }
    
  13. R. D. Falgout, A. Katz, T. V. Kolev, J. B. Schroder, A. M. Wissink, and U. M. Yang, “Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application,” 2014 [Online]. Available at: https://computation.llnl.gov/project/parallel-time-integration/pubs/strand2d-pit.pdf
    @unpublished{FalgoutEtAl2014,
      author = {Falgout, R. D. and Katz, A. and Kolev, T. V. and Schroder, Jacob B. and Wissink, A. M. and Yang, U. M.},
      title = {{Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application}},
      url = {https://computation.llnl.gov/project/parallel-time-integration/pubs/strand2d-pit.pdf},
      year = {2014}
    }
    
  14. M. J. Gander and E. Hairer, “Analysis for parareal algorithms applied to Hamiltonian differential equations,” Journal of Computational and Applied Mathematics, vol. 259, Part A, no. 0, pp. 2–13, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2013.01.011
    @article{GanderHairer2014,
      author = {Gander, Martin J. and Hairer, Ernst},
      journal = {Journal of Computational and Applied Mathematics},
      note = {Proceedings of the Sixteenth International Congress on Computational and Applied Mathematics (ICCAM-2012), Ghent, Belgium, 9-13 July, 2012},
      number = {0},
      pages = {2--13},
      title = {{Analysis for parareal algorithms applied to {H}amiltonian differential equations}},
      url = {http://dx.doi.org/10.1016/j.cam.2013.01.011},
      volume = {259, Part A},
      year = {2014}
    }
    
  15. T. Haut and B. Wingate, “An asymptotic parallel-in-time method for highly oscillatory PDEs,” SIAM Journal on Scientific Computing, vol. 36, no. 2, pp. A693–A713, 2014 [Online]. Available at: http://dx.doi.org/10.1137/130914577
    @article{HautWingate2014,
      author = {Haut, T. and Wingate, B.},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {A693--A713},
      title = {{An asymptotic parallel-in-time method for highly oscillatory {PDE}s}},
      url = {http://dx.doi.org/10.1137/130914577},
      volume = {36},
      year = {2014}
    }
    
  16. R. D. Haynes and B. W. Ong, “MPI-OpenMP algorithms for the parallel space-time solution of time dependent PDEs,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 179–187 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_14
    @inproceedings{HaynesOng2014,
      author = {Haynes, Ronald D. and Ong, Benjamin W.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering XXI}},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {179--187},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{{MPI}-{O}pen{MP} algorithms for the parallel space-time solution of time dependent {PDE}s}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_14},
      volume = {98},
      year = {2014}
    }
    
  17. N. Makhoul-Karam, N. R. Nassif, and J. Erhel, “An Adaptive Parallel-in-Time Method with application to a membrane problem,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 707–717 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_68
    @inproceedings{MakhoulEtAl2014_DDM,
      author = {Makhoul-Karam, Noha and Nassif, Nabil R. and Erhel, Jocelyne},
      booktitle = {{Domain Decomposition Methods in Science and Engineering XXI}},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {707--717},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{An Adaptive Parallel-in-Time Method with application to a membrane problem}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_68},
      volume = {98},
      year = {2014}
    }
    
  18. O. Mula, “Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time,” PhD thesis, Université Pierre et Marie Curie - Paris VI, 2014 [Online]. Available at: https://tel.archives-ouvertes.fr/tel-01081601
    @phdthesis{Mula2014,
      author = {Mula, Olga},
      title = {Some  contributions  towards  the  parallel  simulation  of  time  dependent  neutron transport and the integration of observed data in real time},
      school = {Universit\'{e} Pierre et Marie Curie - Paris VI},
      url = {https://tel.archives-ouvertes.fr/tel-01081601},
      year = {2014}
    }
    
  19. T. Loderer, V. Heuveline, and R. Lohner, “The parareal algorithm as a new approach for numerical integration of ODEs in real-time simulations in automotive industry,” PAMM, vol. 14, no. 1, pp. 1027–1030, 2014 [Online]. Available at: http://dx.doi.org/10.1002/pamm.201410489
    @article{Loderer2014,
      author = {Loderer, Thomas and Heuveline, Vincent and Lohner, Rudolf},
      issn = {1617-7061},
      journal = {PAMM},
      number = {1},
      pages = {1027--1030},
      publisher = {WILEY-VCH Verlag},
      title = {{The parareal algorithm as a new approach for numerical integration of {ODE}s in real-time simulations in automotive industry}},
      url = {http://dx.doi.org/10.1002/pamm.201410489},
      volume = {14},
      year = {2014}
    }
    
  20. M. J. Gander and M. Neumueller, “Analysis of a Time Multigrid Algorithm for DG-Discretizations in Time,” 2014 [Online]. Available at: http://arxiv.org/abs/1409.5254
    @unpublished{Neumueller2014,
      author = {Gander, Martin J. and Neumueller, M.},
      title = {{Analysis of a Time Multigrid Algorithm for {DG}-Discretizations in Time}},
      url = {http://arxiv.org/abs/1409.5254},
      year = {2014}
    }
    
  21. A. Randles and E. Kaxiras, “Parallel in time approximation of the lattice Boltzmann method for laminar flows,” Journal of Computational Physics, vol. 270, pp. 577–586, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2014.04.006
    @article{Randles2014,
      author = {Randles, Amanda and Kaxiras, Efthimios},
      journal = {Journal of Computational Physics},
      pages = {577--586},
      title = {{Parallel in time approximation of the lattice {B}oltzmann method for laminar flows}},
      url = {http://dx.doi.org/10.1016/j.jcp.2014.04.006},
      volume = {270},
      year = {2014}
    }
    
  22. A. Randles and E. Kaxiras, “A Spatio-temporal Coupling Method to Reduce the Time-to-Solution of Cardiovascular Simulations,” in Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, 2014, pp. 593–602 [Online]. Available at: http://dx.doi.org/10.1109/IPDPS.2014.68
    @inproceedings{Randles2014_b,
      author = {Randles, A. and Kaxiras, Efthimios},
      booktitle = {{Parallel and Distributed Processing Symposium, 2014 IEEE 28th International}},
      month = may,
      pages = {593--602},
      title = {{A Spatio-temporal Coupling Method to Reduce the Time-to-Solution of Cardiovascular Simulations}},
      url = {http://dx.doi.org/10.1109/IPDPS.2014.68},
      year = {2014}
    }
    
  23. V. Rao and A. Sandu, “An adjoint-based scalable algorithm for time-parallel integration,” Journal of Computational Science, vol. 5, no. 2, pp. 76–84, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.jocs.2013.03.004
    @article{Rao2014,
      author = {Rao, Vishwas and Sandu, Adrian},
      journal = {Journal of Computational Science},
      number = {2},
      pages = {76--84},
      title = {{An adjoint-based scalable algorithm for time-parallel integration}},
      url = {http://dx.doi.org/10.1016/j.jocs.2013.03.004},
      volume = {5},
      year = {2014}
    }
    
  24. D. Ruprecht, “Convergence of Parareal with spatial coarsening,” PAMM, vol. 14, no. 1, pp. 1031–1034, 2014 [Online]. Available at: http://dx.doi.org/10.1002/pamm.201410490
    @article{Ruprecht2014_GAMM,
      author = {Ruprecht, Daniel},
      issn = {1617-7061},
      journal = {PAMM},
      number = {1},
      pages = {1031--1034},
      publisher = {WILEY-VCH Verlag},
      title = {{Convergence of Parareal with spatial coarsening}},
      url = {http://dx.doi.org/10.1002/pamm.201410490},
      volume = {14},
      year = {2014}
    }
    
  25. R. Krause and D. Ruprecht, “Hybrid Space-Time Parallel Solution of Burgers’ Equation,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 647–655 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_62
    @inproceedings{RuprechtKrause2014_DDM,
      author = {Krause, Rolf and Ruprecht, Daniel},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XXI}}},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {647--655},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Hybrid Space-Time Parallel Solution of {B}urgers' Equation}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_62},
      volume = {98},
      year = {2014}
    }
    
  26. D. Samaddar, D. P. Coster, X. Bonnin, C. Bergmeister, Havlíc̆ková E., L. A. Berry, W. R. Elwasif, and D. B. Batchelor, “Poster: Greater than 10x Acceleration of fusion plasma edge simulations using the Parareal algorithm,” in Proceedings of the 2014 Conference on High Performance Computing Networking, Storage and Analysis Companion, 2014 [Online]. Available at: http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/poster_files/post163s2-file3.pdf
    @inproceedings{Samaddar2014,
      author = {Samaddar, Debasmita and Coster, D.P. and Bonnin, X. and Bergmeister, C. and Havlí\u{c}ková, E. and Berry, Lee A. and Elwasif, Wael R. and Batchelor, D. B.},
      booktitle = {{Proceedings of the 2014 Conference on High Performance Computing Networking, Storage and Analysis Companion}},
      location = {New Orleans, Louisiana, USA},
      series = {{SC '14 Companion}},
      title = {{Poster: Greater than 10x Acceleration of fusion plasma edge simulations using the Parareal algorithm}},
      url = {http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/poster_files/post163s2-file3.pdf},
      year = {2014}
    }
    
  27. B. Song and Y.-L. Jiang, “Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems,” Numerical Algorithms, vol. 67, no. 3, pp. 599–622, 2014 [Online]. Available at: http://dx.doi.org/10.1007/s11075-013-9810-z
    @article{Song2014,
      author = {Song, Bo and Jiang, Yao-Lin},
      journal = {Numerical Algorithms},
      number = {3},
      pages = {599--622},
      publisher = {Springer US},
      title = {{Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems}},
      url = {http://dx.doi.org/10.1007/s11075-013-9810-z},
      volume = {67},
      year = {2014}
    }
    
  28. R. Speck, D. Ruprecht, M. Emmett, M. Bolten, and R. Krause, “A space-time parallel solver for the three-dimensional heat equation,” in Parallel Computing: Accelerating Computational Science and Engineering (CSE), 2014, vol. 25, pp. 263–272 [Online]. Available at: http://dx.doi.org/10.3233/978-1-61499-381-0-263
    @inproceedings{SpeckEtAl2014_Parco,
      author = {Speck, Robert and Ruprecht, Daniel and Emmett, Matthew and Bolten, Matthias and Krause, Rolf},
      booktitle = {{Parallel Computing: Accelerating Computational Science and Engineering (CSE)}},
      editors = {Bader, M. and Bode, A. and Bungartz, H.-J. and Gerndt, M. and Joubert, G.R. and Peters, F.},
      pages = {263--272},
      publisher = {IOS Press},
      series = {{Advances in Parallel Computing}},
      title = {{A space-time parallel solver for the three-dimensional heat equation}},
      url = {http://dx.doi.org/10.3233/978-1-61499-381-0-263},
      volume = {25},
      year = {2014}
    }
    
  29. R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. L. Minion, M. Winkel, and P. Gibbon, “Integrating an N-body problem with SDC and PFASST,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 637–645 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_61
    @inproceedings{SpeckEtAl2014_DDM2012,
      author = {Speck, Robert and Ruprecht, Daniel and Krause, Rolf and Emmett, Matthew and Minion, Michael L. and Winkel, Mathias and Gibbon, Paul},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XXI}}},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {637--645},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Integrating an {N}-body problem with {SDC} and {PFASST}}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_61},
      volume = {98},
      year = {2014}
    }
    
  30. T. Takami and D. Fukudome, “An Identity Parareal Method for Temporal Parallel Computations,” in Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg, 2014, pp. 67–75 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-55224-3_7
    @incollection{Takami2014,
      author = {Takami, Toshiya and Fukudome, Daiki},
      booktitle = {{Parallel Processing and Applied Mathematics}},
      editor = {Wyrzykowski, Roman and Dongarra, Jack and Karczewski, Konrad and Waśniewski, Jerzy},
      pages = {67--75},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{An Identity Parareal Method for Temporal Parallel Computations}},
      url = {http://dx.doi.org/10.1007/978-3-642-55224-3_7},
      year = {2014}
    }
    
  31. T. Takami and D. Fukudome, “An Efficient Pipelined Implementation of Space-Time Parallel Applications,” in Parallel Computing: Accelerating Computational Science and Engineering (CSE), vol. 25, M. Bader, A. Bode, H.-J. Bungartz, M. Gerndt, G. R. Joubert, and F. Peters, Eds. 2014, pp. 273–281 [Online]. Available at: http://dx.doi.org/10.3233/978-1-61499-381-0-273
    @incollection{Takami2014_b,
      author = {Takami, Toshiya and Fukudome, Daiki},
      booktitle = {{Parallel Computing: Accelerating Computational Science and Engineering (CSE)}},
      editor = {Bader, Michael and Bode, Arndt and Bungartz, Hans-Joachim and Gerndt, Michael and Joubert, Gerhard R. and Peters, Frans},
      pages = {273--281},
      series = {{Advances in Parallel Computing}},
      title = {{An Efficient Pipelined Implementation of Space-Time Parallel Applications}},
      url = {http://dx.doi.org/10.3233/978-1-61499-381-0-273},
      volume = {25},
      year = {2014}
    }
    
  32. P. L. C. van der Valk and D. J. Rixen, “Towards a Parallel Time Integration Method for Nonlinear Systems,” in Dynamics of Coupled Structures, Volume 1: Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, 2014, M. Allen, R. Mayes, and D. Rixen, Eds. Cham: Springer International Publishing, 2014, pp. 135–145 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-04501-6_12
    @inbook{VanDerValkEtAl2014,
      author = {van der Valk, Paul L. C. and Rixen, Daniel J.},
      editor = {Allen, Matt and Mayes, Randy and Rixen, Daniel},
      title = {Towards a Parallel Time Integration Method for Nonlinear Systems},
      booktitle = {Dynamics of Coupled Structures, Volume 1: Proceedings of the 32nd IMAC,  A Conference and Exposition on Structural Dynamics, 2014},
      year = {2014},
      publisher = {Springer International Publishing},
      address = {Cham},
      pages = {135--145},
      doi = {10.1007/978-3-319-04501-6_12},
      url = {http://dx.doi.org/10.1007/978-3-319-04501-6_12}
    }
    
  33. S.-L. Wu, “Convergence analysis of some second-order parareal algorithms,” IMA Journal of Numerical Analysis, 2014 [Online]. Available at: http://dx.doi.org/10.1093/imanum/dru031
    @article{Wu2014,
      author = {Wu, Shu-Lin},
      journal = {IMA Journal of Numerical Analysis},
      title = {{Convergence analysis of some second-order parareal algorithms}},
      url = {http://dx.doi.org/10.1093/imanum/dru031},
      year = {2014}
    }
    
  34. Q. Xu, J. S. Hesthaven, and F. Chen, “A parareal method for time-fractional differential equations,” Journal of Computational Physics, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2014.11.034
    @article{Xu2014,
      author = {Xu, Qinwu and Hesthaven, Jan S. and Chen, Feng},
      journal = {Journal of Computational Physics},
      title = {{A parareal method for time-fractional differential equations}},
      url = {http://dx.doi.org/10.1016/j.jcp.2014.11.034},
      year = {2014}
    }
    
top

2013

  1. E. J. Bylaska, J. Q. Weare, and J. H. Weare, “Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations,” The Journal of Chemical Physics, vol. 139, no. 7, p. 074114, 2013 [Online]. Available at: http://dx.doi.org/10.1063/1.4818328
    @article{BylaskaEtAl2013,
      author = {Bylaska, Eric J. and Weare, Jonathan Q. and Weare, John H.},
      journal = {The Journal of Chemical Physics},
      number = {7},
      pages = {074114},
      publisher = {AIP},
      title = {{Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations}},
      url = {http://dx.doi.org/10.1063/1.4818328},
      volume = {139},
      year = {2013}
    }
    
  2. X. Dai, C. Le Bris, F. Legoll, and Y. Maday, “Symmetric parareal algorithms for Hamiltonian systems,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 47, no. 03, pp. 717–742, Apr. 2013 [Online]. Available at: http://dx.doi.org/10.1051/m2an/2012046
    @article{DaiEtAl2013_ESAIM,
      author = {Dai, X. and {Le Bris}, C. and Legoll, F. and Maday, Yvon},
      issue = {03},
      journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
      month = apr,
      pages = {717--742},
      title = {{Symmetric parareal algorithms for {H}amiltonian systems}},
      url = {http://dx.doi.org/10.1051/m2an/2012046},
      volume = {47},
      year = {2013}
    }
    
  3. X. Dai and Y. Maday, “Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems,” SIAM Journal on Scientific Computing, vol. 35, no. 1, pp. A52–A78, 2013 [Online]. Available at: http://dx.doi.org/10.1137/110861002
    @article{DaiEtAl2013,
      author = {Dai, X. and Maday, Yvon},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {A52--A78},
      title = {{Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems}},
      url = {http://dx.doi.org/10.1137/110861002},
      volume = {35},
      year = {2013}
    }
    
  4. X. Du, M. Sarkis, C. E. Schaerer, and D. B. Szyld, “Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems,” Electrontic Transactions on Numerical Analysis, vol. 40, pp. 36–57, 2013 [Online]. Available at: http://etna.mcs.kent.edu/vol.40.2013/pp36-57.dir/pp36-57.pdf
    @article{DuEtAl2013,
      author = {Du, X. and Sarkis, Marcus and Schaerer, Christian E. and Szyld, D. B.},
      journal = {Electrontic Transactions on Numerical Analysis},
      pages = {36--57},
      publisher = {Kent State University},
      title = {{Inexact and truncated parareal-in-time {K}rylov subspace methods for parabolic optimal control problems}},
      url = {http://etna.mcs.kent.edu/vol.40.2013/pp36-57.dir/pp36-57.pdf},
      volume = {40},
      year = {2013}
    }
    
  5. S. Friedhoff, R. D. Falgout, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, “A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel,” in Presented at: Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, United States, Mar 17 - Mar 22, 2013, 2013 [Online]. Available at: http://www.osti.gov/scitech/servlets/purl/1073108
    @inproceedings{FriedhoffEtAl2013,
      author = {Friedhoff, S. and Falgout, R. D. and Kolev, T. V. and MacLachlan, Scott P. and Schroder, Jacob B.},
      booktitle = {{Presented at: Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, United States, Mar 17 - Mar 22, 2013}},
      title = {{A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel}},
      url = {http://www.osti.gov/scitech/servlets/purl/1073108},
      year = {2013}
    }
    
  6. D. Fukudome and T. Takami, “Parallel bucket-brigade communication interface for scientific applications,” in Proceedings of the 20th European MPI Users’ Group Meeting, New York, NY, USA, 2013, pp. 135–136 [Online]. Available at: http://dx.doi.org/10.1145/2488551.2488595
    @inproceedings{FukudomeTakami2013,
      address = {New York, NY, USA},
      author = {Fukudome, Daiki and Takami, Toshiya},
      booktitle = {{Proceedings of the 20th European MPI Users' Group Meeting}},
      isbn = {978-1-4503-1903-4},
      location = {Madrid, Spain},
      numpages = {2},
      pages = {135--136},
      publisher = {ACM},
      series = {{EuroMPI '13}},
      title = {{Parallel bucket-brigade communication interface for scientific applications}},
      url = {http://dx.doi.org/10.1145/2488551.2488595},
      year = {2013}
    }
    
  7. M. J. Gander, Y.-L. Jiang, and R.-J. Li, “Parareal Schwarz Waveform Relaxation Methods,” in Domain Decomposition Methods in Science and Engineering XX, vol. 91, R. Bank, M. Holst, O. Widlund, and J. Xu, Eds. Springer Berlin Heidelberg, 2013, pp. 451–458 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-35275-1_53
    @incollection{GanderEtAl2013_DDM,
      author = {Gander, Martin J. and Jiang, Yao-Lin and Li, Rong-Jian},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XX}}},
      editor = {Bank, Randolph and Holst, Michael and Widlund, Olof and Xu, Jinchao},
      pages = {451--458},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Parareal Schwarz Waveform Relaxation Methods}},
      url = {http://dx.doi.org/10.1007/978-3-642-35275-1_53},
      volume = {91},
      year = {2013}
    }
    
  8. M. J. Gander and S. Güttel, “PARAEXP: A Parallel Integrator for Linear Initial-Value Problems,” SIAM Journal on Scientific Computing, vol. 35, no. 2, pp. C123–C142, 2013 [Online]. Available at: http://dx.doi.org/10.1137/110856137
    @article{GuettelGander2013,
      author = {Gander, Martin J. and Güttel, Stefan},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {C123--C142},
      title = {{PARAEXP: A Parallel Integrator for Linear Initial-Value Problems}},
      url = {http://dx.doi.org/10.1137/110856137},
      volume = {35},
      year = {2013}
    }
    
  9. F. Legoll, T. Lelièvre, and G. Samaey, “A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations,” SIAM Journal on Scientific Computing, vol. 35, no. 4, pp. A1951–A1986, 2013 [Online]. Available at: http://dx.doi.org/10.1137/120872681
    @article{LegollEtAl2013,
      author = {Legoll, F. and Lelièvre, T. and Samaey, G.},
      journal = {SIAM Journal on Scientific Computing},
      number = {4},
      pages = {A1951--A1986},
      title = {{A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations}},
      url = {http://dx.doi.org/10.1137/120872681},
      volume = {35},
      year = {2013}
    }
    
  10. J. R. McClean, J. A. Parkhill, and A. Aspuru-Guzik, “Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics,” Proceedings of the National Academy of Sciences, vol. 110, no. 41, pp. E3901–E3909, 2013 [Online]. Available at: http://dx.doi.org/10.1073/pnas.1308069110
    @article{McCleanEtAl2013,
      author = {McClean, Jarrod R. and Parkhill, John A. and Aspuru-Guzik, Alán},
      journal = {Proceedings of the National Academy of Sciences},
      number = {41},
      pages = {E3901--E3909},
      title = {{Feynman's clock, a new variational principle, and parallel-in-time quantum dynamics}},
      url = {http://dx.doi.org/10.1073/pnas.1308069110},
      volume = {110},
      year = {2013}
    }
    
  11. D. Ruprecht, R. Speck, M. Emmett, M. Bolten, and R. Krause, “Poster: Extreme-scale space-time parallelism,” in Proceedings of the 2013 Conference on High Performance Computing Networking, Storage and Analysis Companion, 2013 [Online]. Available at: http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
    @inproceedings{RuprechtEtAl2013_SC,
      author = {Ruprecht, Daniel and Speck, Robert and Emmett, Matthew and Bolten, Matthias and Krause, Rolf},
      booktitle = {{Proceedings of the 2013 Conference on High Performance Computing Networking, Storage and Analysis Companion}},
      location = {Denver, Colorado, USA},
      series = {{SC '13 Companion}},
      title = {{Poster: Extreme-scale space-time parallelism}},
      url = {http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf},
      year = {2013}
    }
    
  12. D. Samaddar, T. A. Casper, S. H. Kim, L. A. Berry, W. R. Elwasif, D. B. Batchelor, and W. A. Houlberg, “Time parallelization of advanced operation scenario simulations of ITER plasma,” Journal of Physics: Conference Series, vol. 410, no. 1, p. 012032, 2013 [Online]. Available at: http://dx.doi.org/10.1088/1742-6596/410/1/012032
    @article{SamaddarEtAl2013,
      author = {Samaddar, Debasmita and Casper, T. A. and Kim, S. H. and Berry, Lee A. and Elwasif, Wael R. and Batchelor, D. B. and Houlberg, W. A.},
      journal = {Journal of Physics: Conference Series},
      number = {1},
      pages = {012032},
      title = {{Time parallelization of advanced operation scenario simulations of {ITER} plasma}},
      url = {http://dx.doi.org/10.1088/1742-6596/410/1/012032},
      volume = {410},
      year = {2013}
    }
    
  13. Q. Wang, S. A. Gomez, P. J. Blonigan, A. L. Gregory, and E. Y. Qian, “Towards scalable parallel-in-time turbulent flow simulations,” Physics of Fluids (1994-present), vol. 25, no. 11, p. 110818, 2013.
    @article{wang2013towards,
      author = {Wang, Qiqi and Gomez, Steven A and Blonigan, Patrick J and Gregory, Alastair L and Qian, Elizabeth Y},
      journal = {Physics of Fluids (1994-present)},
      number = {11},
      pages = {110818},
      publisher = {AIP Publishing},
      title = {Towards scalable parallel-in-time turbulent flow simulations},
      volume = {25},
      year = {2013}
    }
    
top

2012

  1. P. Arbenz, A. Hiltebrand, and D. Obrist, “A Parallel Space-Time Finite Difference Solver for Periodic Solutions of the Shallow-Water Equation,” in Parallel Processing and Applied Mathematics, vol. 7204, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg, 2012, pp. 302–312 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-31500-8_31
    @incollection{ArbenzEtAl2012,
      author = {Arbenz, Peter and Hiltebrand, Andreas and Obrist, Dominik},
      booktitle = {{Parallel Processing and Applied Mathematics}},
      editor = {Wyrzykowski, Roman and Dongarra, Jack and Karczewski, Konrad and Waśniewski, Jerzy},
      pages = {302--312},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{A Parallel Space-Time Finite Difference Solver for Periodic Solutions of the Shallow-Water Equation}},
      url = {http://dx.doi.org/10.1007/978-3-642-31500-8_31},
      volume = {7204},
      year = {2012}
    }
    
  2. L. A. Berry, W. R. Elwasif, J. M. Reynolds-Barredo, D. Samaddar, R. S. Sánchez, and D. E. Newman, “Event-based parareal: A data-flow based implementation of parareal,” Journal of Computational Physics, vol. 231, no. 17, pp. 5945–5954, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2012.05.016
    @article{BerryEtAl2012,
      author = {Berry, Lee A. and Elwasif, Wael R. and Reynolds-Barredo, J. M. and Samaddar, Debasmita and Sánchez, Raul S. and Newman, David E.},
      journal = {Journal of Computational Physics},
      number = {17},
      pages = {5945--5954},
      title = {{Event-based parareal: A data-flow based implementation of parareal}},
      url = {http://dx.doi.org/10.1016/j.jcp.2012.05.016},
      volume = {231},
      year = {2012}
    }
    
  3. A. J. Christlieb, R. D. Haynes, and B. W. Ong, “A Parallel Space-Time Algorithm,” SIAM Journal on Scientific Computing, vol. 34, no. 5, pp. C233–C248, 2012 [Online]. Available at: http://dx.doi.org/10.1137/110843484
    @article{ChristliebEtAl2012,
      author = {Christlieb, Andrew J. and Haynes, Ronald D. and Ong, Benjamin W.},
      journal = {SIAM Journal on Scientific Computing},
      number = {5},
      pages = {C233--C248},
      title = {{A Parallel Space-Time Algorithm}},
      url = {http://dx.doi.org/10.1137/110843484},
      volume = {34},
      year = {2012}
    }
    
  4. M. Emmett and M. L. Minion, “Toward an Efficient Parallel in Time Method for Partial Differential Equations,” Communications in Applied Mathematics and Computational Science, vol. 7, pp. 105–132, 2012 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2012.7.105
    @article{EmmettMinion2012,
      author = {Emmett, Matthew and Minion, Michael L.},
      journal = {Communications in Applied Mathematics and Computational Science},
      pages = {105--132},
      title = {{Toward an Efficient Parallel in Time Method for Partial Differential Equations}},
      url = {http://dx.doi.org/10.2140/camcos.2012.7.105},
      volume = {7},
      year = {2012}
    }
    
  5. S. S. Foley, W. R. Elwasif, and D. E. Bernholdt, “The integrated plasma simulator: A flexible python framework for coupled multiphysics simulation,” Oak Ridge National Laboratory, ORNL/TM-2012/57, 2012 [Online]. Available at: http://info.ornl.gov/sites/publications/files/Pub34832.pdf
    @techreport{FoleyEtAl2012,
      author = {Foley, Samantha S. and Elwasif, Wael R. and Bernholdt, David E.},
      institution = {Oak Ridge National Laboratory},
      number = {ORNL/TM-2012/57},
      title = {{The integrated plasma simulator: A flexible python framework for coupled multiphysics simulation}},
      url = {http://info.ornl.gov/sites/publications/files/Pub34832.pdf},
      year = {2012}
    }
    
  6. J. Geiser and S. Güttel, “Coupling methods for heat transfer and heat flow: Operator splitting and the parareal algorithm,” Journal of Mathematical Analysis and Applications, vol. 388, no. 2, pp. 873–887, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.jmaa.2011.10.030
    @article{GeiserGuettel2012,
      author = {Geiser, Jürgen and Güttel, Stefan},
      journal = {Journal of Mathematical Analysis and Applications},
      number = {2},
      pages = {873--887},
      title = {{Coupling methods for heat transfer and heat flow: Operator splitting and the parareal algorithm}},
      url = {http://dx.doi.org/10.1016/j.jmaa.2011.10.030},
      volume = {388},
      year = {2012}
    }
    
  7. L.-P. He and M. He, “Parareal in Time Simulation Of Morphological Transformation in Cubic Alloys with Spatially Dependent Composition,” Communications in Computational Physics, vol. 11, no. 5, pp. 1697–1717, 2012 [Online]. Available at: http://dx.doi.org/10.4208/cicp.110310.090911a
    @article{He2012,
      author = {He, Li-Ping and He, Minxin},
      doi = {10.4208/cicp.110310.090911a},
      issue = {5},
      issn = {1991-7120},
      journal = {Communications in Computational Physics},
      pages = {1697--1717},
      title = {Parareal in Time Simulation Of Morphological Transformation in Cubic Alloys with Spatially Dependent Composition},
      url = {http://dx.doi.org/10.4208/cicp.110310.090911a},
      volume = {11},
      year = {2012}
    }
    
  8. J. Liu and Y.-L. Jiang, “A parareal algorithm based on waveform relaxation,” Mathematics and Computers in Simulation, vol. 82, no. 11, pp. 2167–2181, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.matcom.2012.05.017
    @article{LiuJiang2012,
      author = {Liu, Jun and Jiang, Yao-Lin},
      journal = {Mathematics and Computers in Simulation},
      number = {11},
      pages = {2167--2181},
      title = {{A parareal algorithm based on waveform relaxation}},
      url = {http://dx.doi.org/10.1016/j.matcom.2012.05.017},
      volume = {82},
      year = {2012}
    }
    
  9. J. Liu and Y.-L. Jiang, “A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations,” Journal of Computational and Applied Mathematics, vol. 236, no. 17, pp. 4245–4263, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2012.05.014
    @article{LiuJiang2012_JCAM,
      author = {Liu, Jun and Jiang, Yao-Lin},
      journal = {Journal of Computational and Applied Mathematics},
      number = {17},
      pages = {4245--4263},
      title = {{A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations}},
      url = {http://dx.doi.org/10.1016/j.cam.2012.05.014},
      volume = {236},
      year = {2012}
    }
    
  10. B. W. Ong, A. Melfi, and A. J. Christlieb, “Parallel Semi-Implicit Time Integrators,” 2012 [Online]. Available at: http://arxiv.org/abs/1209.4297
    @unpublished{OngEtAl2012,
      author = {Ong, Benjamin W. and Melfi, Andrew and Christlieb, Andrew J.},
      note = {arXiv:1209.4297 [cs.DC]},
      title = {{Parallel Semi-Implicit Time Integrators}},
      url = {http://arxiv.org/abs/1209.4297},
      year = {2012}
    }
    
  11. V. Rao, A. Cioaca, and A. Sandu, “A Highly Scalable Approach for Time Parallelization of Long Range Forecasts,” in High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion: 2012, pp. 609–616 [Online]. Available at: http://dx.doi.org/10.1109/SC.Companion.2012.85
    @inproceedings{RaoEtAl2012,
      author = {Rao, Vishwas and Cioaca, Alexandru and Sandu, Adrian},
      booktitle = {{High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:}},
      pages = {609--616},
      title = {{A Highly Scalable Approach for Time Parallelization of Long Range Forecasts}},
      url = {http://dx.doi.org/10.1109/SC.Companion.2012.85},
      year = {2012}
    }
    
  12. J. M. Reynolds-Barredo, D. E. Newman, R. S. Sánchez, D. Samaddar, L. A. Berry, and W. R. Elwasif, “Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations,” Journal of Computational Physics, vol. 231, no. 23, pp. 7851–7867, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2012.07.028
    @article{ReynoldsEtAl2012,
      author = {Reynolds-Barredo, J. M. and Newman, David E. and Sánchez, Raul S. and Samaddar, Debasmita and Berry, Lee A. and Elwasif, Wael R.},
      journal = {Journal of Computational Physics},
      number = {23},
      pages = {7851--7867},
      title = {{Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations}},
      url = {http://dx.doi.org/10.1016/j.jcp.2012.07.028},
      volume = {231},
      year = {2012}
    }
    
  13. J. M. Reynolds-Barredo, D. E. Newman, R. S. Sánchez, and L. A. Berry, “Modelling parareal convergence in 2D drift wave plasma turbulence,” in High Performance Computing and Simulation (HPCS), 2012 International Conference on, 2012, pp. 726–727 [Online]. Available at: http://dx.doi.org/10.1109/HPCSim.2012.6267004
    @inproceedings{ReynoldsEtAl2012_HPCS,
      author = {Reynolds-Barredo, J. M. and Newman, David E. and Sánchez, Raul S. and Berry, Lee A.},
      booktitle = {{High Performance Computing and Simulation (HPCS), 2012 International Conference on}},
      pages = {726--727},
      title = {{Modelling parareal convergence in 2D drift wave plasma turbulence}},
      url = {http://dx.doi.org/10.1109/HPCSim.2012.6267004},
      year = {2012}
    }
    
  14. D. Ruprecht and R. Krause, “Explicit parallel-in-time integration of a linear acoustic-advection system,” Computers & Fluids, vol. 59, no. 0, pp. 72–83, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.compfluid.2012.02.015
    @article{RuprechtKrause2012,
      author = {Ruprecht, Daniel and Krause, Rolf},
      journal = {Computers \& Fluids},
      number = {0},
      pages = {72--83},
      title = {{Explicit parallel-in-time integration of a linear acoustic-advection system}},
      url = {http://dx.doi.org/10.1016/j.compfluid.2012.02.015},
      volume = {59},
      year = {2012}
    }
    
  15. R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. L. Minion, M. Winkel, and P. Gibbon, “A massively space-time parallel N-body solver,” in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Los Alamitos, CA, USA, 2012, pp. 92:1–92:11 [Online]. Available at: http://dx.doi.org/10.1109/SC.2012.6
    @inproceedings{SpeckEtAl2012,
      address = {Los Alamitos, CA, USA},
      articleno = {92},
      author = {Speck, Robert and Ruprecht, Daniel and Krause, Rolf and Emmett, Matthew and Minion, Michael L. and Winkel, Mathias and Gibbon, Paul},
      booktitle = {{Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis}},
      location = {Salt Lake City, Utah},
      numpages = {11},
      pages = {92:1--92:11},
      publisher = {IEEE Computer Society Press},
      series = {{SC '12}},
      title = {{A massively space-time parallel {N}-body solver}},
      url = {http://dx.doi.org/10.1109/SC.2012.6},
      year = {2012}
    }
    
  16. H. Samuel, “Time domain parallelization for computational geodynamics,” Geochemistry, Geophysics, Geosystems, vol. 13, no. 1, 2012 [Online]. Available at: http://dx.doi.org/10.1029/2011GC003905
    @article{Samuel2012,
      author = {Samuel, H.},
      journal = {Geochemistry, Geophysics, Geosystems},
      number = {1},
      title = {{Time domain parallelization for computational geodynamics}},
      url = {http://dx.doi.org/10.1029/2011GC003905},
      volume = {13},
      year = {2012}
    }
    
  17. T. Takami and A. Nishida, “Parareal Acceleration of Matrix Multiplication,” in Applications, Tools and Techniques on the Road to Exascale Computing, 2012, vol. 22, pp. 437–444 [Online]. Available at: http://dx.doi.org/10.3233/978-1-61499-041-3-437
    @inproceedings{Takami2012,
      author = {Takami, Toshiya and Nishida, A.},
      booktitle = {{Applications, Tools and Techniques on the Road to Exascale Computing}},
      pages = {437--444},
      series = {{Advances in Parallel Computing}},
      title = {{Parareal Acceleration of Matrix Multiplication}},
      url = {http://dx.doi.org/10.3233/978-1-61499-041-3-437},
      volume = {22},
      year = {2012}
    }
    
  18. H. Xiao and E. Aubanel, “Scheduling of Tasks in the Parareal Algorithm for Heterogeneous Cloud Platforms,” in Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International, 2012, pp. 1440–1448 [Online]. Available at: http://dx.doi.org/10.1109/IPDPSW.2012.181
    @inproceedings{XiaoAubanel2012,
      author = {Xiao, Hongtao and Aubanel, E.},
      booktitle = {{Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International}},
      pages = {1440--1448},
      title = {{Scheduling of Tasks in the Parareal Algorithm for Heterogeneous Cloud Platforms}},
      url = {http://dx.doi.org/10.1109/IPDPSW.2012.181},
      year = {2012}
    }
    
top

2011

  1. E. Aubanel, “Scheduling of Tasks in the Parareal Algorithm,” Parallel Computing, vol. 37, pp. 172–182, 2011 [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2010.10.004
    @article{Aubanel2011,
      author = {Aubanel, E.},
      journal = {Parallel Computing},
      pages = {172--182},
      title = {{Scheduling of Tasks in the Parareal Algorithm}},
      url = {http://dx.doi.org/10.1016/j.parco.2010.10.004},
      volume = {37},
      year = {2011}
    }
    
  2. T. Cadeau and F. Magoules, “Coupling the Parareal Algorithm with the Waveform Relaxation Method for the Solution of Differential Algebraic Equations,” in Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2011 Tenth International Symposium on, 2011, pp. 15–19 [Online]. Available at: http://dx.doi.org/10.1109/DCABES.2011.34
    @inproceedings{Cadeau2011,
      author = {Cadeau, T. and Magoules, F.},
      booktitle = {{Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2011 Tenth International Symposium on}},
      pages = {15--19},
      title = {{Coupling the Parareal Algorithm with the Waveform Relaxation Method for the Solution of Differential Algebraic Equations}},
      url = {http://dx.doi.org/10.1109/DCABES.2011.34},
      year = {2011}
    }
    
  3. A. J. Christlieb and B. W. Ong, “Implicit parallel time integrators,” Journal of Scientific Computing, vol. 49, no. 2, pp. 167–179, 2011 [Online]. Available at: http://dx.doi.org/10.1007/s10915-010-9452-4
    @article{ChristliebEtAl2011,
      author = {Christlieb, Andrew J. and Ong, Benjamin W.},
      journal = {Journal of Scientific Computing},
      number = {2},
      pages = {167--179},
      title = {{Implicit parallel time integrators}},
      url = {http://dx.doi.org/10.1007/s10915-010-9452-4},
      volume = {49},
      year = {2011}
    }
    
  4. M. Duarte, M. Massot, and S. Descombes, “Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 45, no. 05, pp. 825–852, Aug. 2011 [Online]. Available at: http://dx.doi.org/10.1051/m2an/2010104
    @article{DuarteEtAl2011,
      author = {Duarte, Max and Massot, Marc and Descombes, Stéphane},
      issn = {1290-3841},
      issue = {05},
      journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
      month = aug,
      pages = {825--852},
      title = {{Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies}},
      url = {http://dx.doi.org/10.1051/m2an/2010104},
      volume = {45},
      year = {2011}
    }
    
  5. W. R. Elwasif, S. S. Foley, D. E. Bernholdt, L. A. Berry, D. Samaddar, D. E. Newman, and R. S. Sánchez, “A dependency-driven formulation of parareal: parallel-in-time solution of PDEs as a many-task application,” in Proceedings of the 2011 ACM international workshop on many task computing on grids and supercomputers, 2011, pp. 15–24 [Online]. Available at: http://dx.doi.org/10.1145/2132876.2132883
    @inproceedings{ElwasifEtAl2011,
      author = {Elwasif, Wael R. and Foley, Samantha S. and Bernholdt, David E. and Berry, Lee A. and Samaddar, Debasmita and Newman, David E. and Sánchez, Raul S.},
      booktitle = {{Proceedings of the 2011 ACM international workshop on many task computing on grids and supercomputers}},
      pages = {15--24},
      title = {{A dependency-driven formulation of parareal: parallel-in-time solution of {PDE}s as a many-task application}},
      url = {http://dx.doi.org/10.1145/2132876.2132883},
      year = {2011}
    }
    
top

2010

  1. A. J. Christlieb, C. B. Macdonald, and B. W. Ong, “Parallel high-order integrators,” SIAM Journal on Scientific Computing, vol. 32, no. 2, pp. 818–835, 2010 [Online]. Available at: http://dx.doi.org/10.1137/09075740X
    @article{ChristliebEtAl2010,
      author = {Christlieb, Andrew J. and Macdonald, Colin B and Ong, Benjamin W.},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {818--835},
      title = {{Parallel high-order integrators}},
      url = {http://dx.doi.org/10.1137/09075740X},
      volume = {32},
      year = {2010}
    }
    
  2. B. Lepsa and A. Sandu, “An efficient error control mechanism for the adaptive ’parareal’ time discretization algorithm,” in Proceedings of the 2010 Spring Simulation Multiconference, San Diego, CA, USA, 2010, pp. 87:1–87:7 [Online]. Available at: http://dx.doi.org/10.1145/1878537.1878628
    @inproceedings{LepsaSandu2010,
      acmid = {1878628},
      address = {San Diego, CA, USA},
      articleno = {87},
      author = {Lepsa, Bianca and Sandu, Adrian},
      booktitle = {{Proceedings of the 2010 Spring Simulation Multiconference}},
      location = {Orlando, Florida},
      numpages = {7},
      pages = {87:1--87:7},
      publisher = {Society for Computer Simulation International},
      series = {{SpringSim '10}},
      title = {{An efficient error control mechanism for the adaptive 'parareal' time discretization algorithm}},
      url = {http://dx.doi.org/10.1145/1878537.1878628},
      year = {2010}
    }
    
  3. T. Mathew, M. Sarkis, and C. E. Schaerer, “Analysis of Block Parareal Preconditioners for Parabolic Optimal Control Problems,” SIAM Journal on Scientific Computing, vol. 32, no. 3, pp. 1180–1200, 2010 [Online]. Available at: http://dx.doi.org/10.1137/080717481
    @article{MathewEtAl2010,
      author = {Mathew, Tarek and Sarkis, Marcus and Schaerer, Christian E.},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {1180--1200},
      title = {{Analysis of Block Parareal Preconditioners for Parabolic Optimal Control Problems}},
      volume = {32},
      year = {2010},
      url = {http://dx.doi.org/10.1137/080717481}
    }
    
  4. M. L. Minion, “A Hybrid Parareal Spectral Deferred Corrections Method,” Communications in Applied Mathematics and Computational Science, vol. 5, no. 2, pp. 265–301, 2010 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2010.5.265
    @article{Minion2010,
      author = {Minion, Michael L.},
      journal = {Communications in Applied Mathematics and Computational Science},
      number = {2},
      pages = {265--301},
      title = {{A Hybrid Parareal Spectral Deferred Corrections Method}},
      url = {http://dx.doi.org/10.2140/camcos.2010.5.265},
      volume = {5},
      year = {2010}
    }
    
  5. S. Mitran, “Time parallel kinetic-molecular interaction algorithm for CPU/GPU computers,” Procedia Computer Science, vol. 1, no. 1, pp. 745–752, 2010 [Online]. Available at: http://dx.doi.org/10.1016/j.procs.2010.04.080
    @article{Mitran2010,
      author = {Mitran, Sorin},
      journal = {Procedia Computer Science},
      number = {1},
      pages = {745--752},
      title = {{Time parallel kinetic-molecular interaction algorithm for {CPU}/{GPU} computers}},
      url = {http://dx.doi.org/10.1016/j.procs.2010.04.080},
      volume = {1},
      year = {2010}
    }
    
  6. D. Samaddar, D. E. Newman, and R. S. Sánchez, “Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm,” Journal of Computational Physics, vol. 229, no. 18, pp. 6558–6573, 2010 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2010.05.012
    @article{SamaddarEtAl2010,
      author = {Samaddar, Debasmita and Newman, David E. and S\'{a}nchez, Raul S.},
      issue = {18},
      journal = {Journal of Computational Physics},
      pages = {6558--6573},
      title = {{Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm}},
      url = {http://dx.doi.org/10.1016/j.jcp.2010.05.012},
      volume = {229},
      year = {2010}
    }
    
top

2009

  1. P. Amodio and L. Brugnano, “Parallel solution in time of ODEs: some achievements and perspectives,” Applied Numerical Mathematics, vol. 59, no. 3–4, pp. 424–435, 2009 [Online]. Available at: http://dx.doi.org/10.1016/j.apnum.2008.03.024
    @article{AmodioBrugnano2009,
      author = {Amodio, Pierluigi and Brugnano, Luigi},
      journal = {Applied Numerical Mathematics},
      number = {3--4},
      pages = {424--435},
      title = {{Parallel solution in time of {ODE}s: some achievements and perspectives}},
      url = {http://dx.doi.org/10.1016/j.apnum.2008.03.024},
      volume = {59},
      year = {2009}
    }
    
  2. A. Blouza, B. Laurent, and S. M. Kaber, “Parallel in time algorithms with reduction methods for solving chemical kinetics,” Communications in Applied Mathematics and Computational Science, vol. 5, no. 2, pp. 241–263, 2009 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2010.5.241
    @article{BlouzaEtAl2009,
      author = {Blouza, A. and Laurent, B. and Kaber, S. M.},
      journal = {Communications in Applied Mathematics and Computational Science},
      number = {2},
      pages = {241--263},
      title = {{Parallel in time algorithms with reduction methods for solving chemical kinetics}},
      url = {http://dx.doi.org/10.2140/camcos.2010.5.241},
      volume = {5},
      year = {2009}
    }
    
  3. A. Borzì and G. von Winckel, “Multigrid Methods and Sparse-Grid Collocation Techniques for Parabolic Optimal Control Problems with Random Coefficients,” SIAM Journal on Scientific Computing, vol. 31, no. 3, pp. 2172–2192, 2009 [Online]. Available at: http://dx.doi.org/10.1137/070711311
    @article{BorziWinckel2009,
      author = {Borzì, Alfio and von Winckel, G.},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {2172--2192},
      title = {{Multigrid Methods and Sparse-Grid Collocation Techniques for Parabolic Optimal Control Problems with Random Coefficients}},
      url = {{http://dx.doi.org/10.1137/070711311}},
      volume = {31},
      year = {2009}
    }
    
  4. E. Celledoni and T. Kvamsdal, “Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium,” International Journal for Numerical Methods in Engineering, vol. 79, no. 5, pp. 576–598, 2009 [Online]. Available at: http://dx.doi.org/10.1002/nme.2585
    @article{Celledoni2009,
      author = {Celledoni, E. and Kvamsdal, T.},
      journal = {International Journal for Numerical Methods in Engineering},
      number = {5},
      pages = {576--598},
      title = {{Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium}},
      url = {http://dx.doi.org/10.1002/nme.2585},
      volume = {79},
      year = {2009}
    }
    
  5. J. Cortial and C. Farhat, “A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems,” International Journal for Numerical Methods in Engineering, vol. 77, no. 4, pp. 451–470, 2009 [Online]. Available at: http://dx.doi.org/10.1002/nme.2418
    @article{CortialFarhat2009,
      author = {Cortial, Julien and Farhat, Charbel},
      journal = {International Journal for Numerical Methods in Engineering},
      number = {4},
      pages = {451--470},
      title = {{A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems}},
      url = {http://dx.doi.org/10.1002/nme.2418},
      volume = {77},
      year = {2009}
    }
    
  6. S. Engblom, “Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics,” Multiscale Modeling & Simulation, vol. 8, no. 1, pp. 46–68, 2009 [Online]. Available at: http://dx.doi.org/10.1137/080733723
    @article{Engblom2009,
      author = {Engblom, S.},
      journal = {Multiscale Modeling \& Simulation},
      number = {1},
      pages = {46--68},
      title = {{Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics}},
      url = {{http://dx.doi.org/10.1137/080733723}},
      volume = {8},
      year = {2009}
    }
    
  7. G. Frantziskonis, K. Muralidharan, P. Deymier, S. Simunovic, P. Nukala, and S. Pannala, “Time-parallel multiscale/multiphysics framework,” Journal of Computational Physics, vol. 228, no. 21, pp. 8085–8092, 2009 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2009.07.035
    @article{FrantziskonisEtAl2009,
      author = {Frantziskonis, G. and Muralidharan, K. and Deymier, P. and Simunovic, S. and Nukala, P. and Pannala, S.},
      journal = {Journal of Computational Physics},
      number = {21},
      pages = {8085--8092},
      title = {{Time-parallel multiscale/multiphysics framework}},
      url = {{http://dx.doi.org/10.1016/j.jcp.2009.07.035}},
      volume = {228},
      year = {2009}
    }
    
  8. Y. Maday, “Symposium: Recent Advances on the Parareal in Time Algorithms,” AIP Conference Proceedings, vol. 1168, no. 1, pp. 1515–1516, 2009 [Online]. Available at: http://dx.doi.org/10.1063/1.3241386
    @article{Maday2009,
      author = {Maday, Yvon},
      editor = {Simos, Theodore E. and Psihoyios, George and Tsitouras, Ch.},
      journal = {AIP Conference Proceedings},
      number = {1},
      pages = {1515--1516},
      title = {{Symposium: Recent Advances on the Parareal in Time Algorithms}},
      url = {{http://dx.doi.org/10.1063/1.3241386}},
      volume = {1168},
      year = {2009}
    }
    
  9. D. Mercerat, L. Guillot, and J.-P. Vilotte, “Application of the parareal algorithm for acoustic wave propagation,” in AIP Conference Proceedings, 2009, vol. 1168, pp. 1521–1524 [Online]. Available at: http://dx.doi.org/10.1063/1.3241388
    @inproceedings{Mercerat2009,
      author = {Mercerat, Diego and Guillot, Laurent and Vilotte, Jean-Pierre},
      booktitle = {{AIP Conference Proceedings}},
      pages = {1521--1524},
      title = {{Application of the parareal algorithm for acoustic wave propagation}},
      url = {{http://dx.doi.org/10.1063/1.3241388}},
      volume = {1168},
      year = {2009}
    }
    
  10. N. R. Nassif, N. Makhoul-Karam, and Y. Soukiassian, “Computation of blowing-up solutions for second-order differential equations using re-scaling techniques,” Journal of Computational and Applied Mathematics, vol. 227, no. 1, pp. 185–195, 2009 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2008.07.020
    @article{NassifEtAl2009,
      author = {Nassif, Nabil R. and Makhoul-Karam, Noha and Soukiassian, Yeran},
      journal = {Journal of Computational and Applied Mathematics},
      number = {1},
      pages = {185--195},
      title = {{Computation of blowing-up solutions for second-order differential equations using re-scaling techniques}},
      url = {http://dx.doi.org/10.1016/j.cam.2008.07.020},
      volume = {227},
      year = {2009}
    }
    
  11. S. Wu, B. Shi, and C. Huang, “Parareal-Richardson Algorithm for Solving Nonlinear ODEs and PDEs,” Communications in Computational Physics, vol. 6, no. 4, pp. 883–902, 2009 [Online]. Available at: http://dx.doi.org/10.4208/cicp.2009.v6.p883
    @article{Wu2009,
      author = {Wu, Shulin and Shi, Baochang and Huang, Chengming},
      issue = {4},
      journal = {Communications in Computational Physics},
      pages = {883--902},
      title = {Parareal-Richardson Algorithm for Solving Nonlinear ODEs and PDEs},
      url = {http://dx.doi.org/10.4208/cicp.2009.v6.p883},
      volume = {6},
      year = {2009}
    }
    
top

2008

  1. P. Amodio and L. Brugnano, “Recent Advances in the Parallel Solution in Time of ODEs,” AIP Conference Proceedings, vol. 1048, no. 1, pp. 867–870, 2008 [Online]. Available at: http://dx.doi.org/10.1063/1.2991069
    @article{AmodioBrugnano2008,
      author = {Amodio, Pierluigi and Brugnano, Luigi},
      editor = {Simos, Theodore E. and Psihoyios, George and Tsitouras, Ch.},
      journal = {AIP Conference Proceedings},
      number = {1},
      pages = {867--870},
      title = {{Recent Advances in the Parallel Solution in Time of {ODE}s}},
      url = {{http://dx.doi.org/10.1063/1.2991069}},
      volume = {1048},
      year = {2008}
    }
    
  2. G. Bal and Q. Wu, “Symplectic Parareal,” in Domain Decomposition Methods in Science and Engineering XVII, vol. 60, U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, and W. Zulehner, Eds. Springer Berlin Heidelberg, 2008, pp. 401–408 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-75199-1_51
    @incollection{BalEtAl2008,
      author = {Bal, Guillaume and Wu, Qi},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XVII}}},
      editor = {Langer, Ulrich and Discacciati, Marco and Keyes, DavidE. and Widlund, OlofB. and Zulehner, Walter},
      pages = {401--408},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Symplectic Parareal}},
      url = {http://dx.doi.org/10.1007/978-3-540-75199-1_51},
      volume = {60},
      year = {2008}
    }
    
  3. M. J. Gander, “Analysis of the Parareal Algorithm Applied to Hyperbolic Problems using Characteristics,” Bol. Soc. Esp. Mat. Apl., vol. 42, pp. 21–35, 2008.
    @article{Gander2008,
      author = {Gander, Martin J.},
      journal = {Bol. Soc. Esp. Mat. Apl.},
      pages = {21--35},
      title = {{Analysis of the Parareal Algorithm Applied to Hyperbolic Problems using Characteristics}},
      volume = {42},
      year = {2008}
    }
    
  4. M. J. Gander and E. Hairer, “Nonlinear Convergence Analysis for the Parareal Algorithm,” in Domain Decomposition Methods in Science and Engineering, 2008, vol. 60, pp. 45–56 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-75199-1_4
    @inproceedings{GanderHairer2008,
      author = {Gander, Martin J. and Hairer, Ernst},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      editor = {Langer, U. and Widlund, O. and Keyes, D.},
      pages = {45--56},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Nonlinear Convergence Analysis for the Parareal Algorithm}},
      url = {http://dx.doi.org/10.1007/978-3-540-75199-1_4},
      volume = {60},
      year = {2008}
    }
    
  5. M. J. Gander and M. Petcu, “Analysis of a Krylov Subspace Enhanced Parareal Algorithm for Linear Problem,” ESAIM: Proc., vol. 25, pp. 114–129, 2008 [Online]. Available at: http://dx.doi.org/10.1051/proc:082508
    @article{GanderPetcu2008,
      author = {Gander, Martin J. and Petcu, M.},
      journal = {ESAIM: Proc.},
      pages = {114--129},
      title = {{Analysis of a {K}rylov Subspace Enhanced Parareal Algorithm for Linear Problem}},
      url = {http://dx.doi.org/10.1051/proc:082508},
      volume = {25},
      year = {2008}
    }
    
  6. Y. Liu and J. Hu, “Modified propagators of parareal in time algorithm and application to Princeton Ocean model,” Int. J. for Numerical Methods in Fluids, vol. 57, no. 12, pp. 1793–1804, 2008 [Online]. Available at: http://dx.doi.org/10.1002/fld.1703
    @article{Liu2008,
      author = {Liu, Y. and Hu, J.},
      journal = {Int. J. for Numerical Methods in Fluids},
      number = {12},
      pages = {1793--1804},
      title = {{Modified propagators of parareal in time algorithm and application to {P}rinceton Ocean model}},
      url = {http://dx.doi.org/10.1002/fld.1703},
      volume = {57},
      year = {2008}
    }
    
  7. Y. Maday and E. M. Rønquist, “Parallelization in time through tensor-product space-time solvers,” Comptes Rendus Mathematique, vol. 346, no. 1–2, pp. 113–118, 2008 [Online]. Available at: http://dx.doi.org/10.1016/j.crma.2007.09.012
    @article{MadayRonquist2008,
      author = {Maday, Yvon and Rønquist, Einar M.},
      journal = {Comptes Rendus Mathematique},
      number = {1--2},
      pages = {113--118},
      title = {{Parallelization in time through tensor-product space-time solvers}},
      url = {{http://dx.doi.org/10.1016/j.crma.2007.09.012}},
      volume = {346},
      year = {2008}
    }
    
  8. M. L. Minion and S. A. Williams, “Parareal and spectral deferred corrections,” in AIP Conference Proceedings, 2008, vol. 1048, p. 388 [Online]. Available at: http://dx.doi.org/10.1063/1.2990941
    @inproceedings{MinionEtAl2008,
      author = {Minion, Michael L. and Williams, Sarah A.},
      booktitle = {{AIP Conference Proceedings}},
      pages = {388},
      title = {{Parareal and spectral deferred corrections}},
      url = {http://dx.doi.org/10.1063/1.2990941},
      volume = {1048},
      year = {2008}
    }
    
  9. M. Sarkis, C. E. Schaerer, and T. Mathew, “Block Diagonal Parareal Preconditioner for Parabolic Optimal Control Problems,” in Domain Decomposition Methods in Science and Engineering XVII, vol. 60, U. Langer and al., Eds. Springer Berlin Heidelberg, 2008, pp. 409–416 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-75199-1_52
    @incollection{SarkisEtAl2008,
      author = {Sarkis, Marcus and Schaerer, Christian E. and Mathew, Tarek},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XVII}}},
      editor = {Langer, Ulrich and {al.}},
      pages = {409--416},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Block Diagonal Parareal Preconditioner for Parabolic Optimal Control Problems}},
      url = {{http://dx.doi.org/10.1007/978-3-540-75199-1_52}},
      volume = {60},
      year = {2008}
    }
    
top

2007

  1. D. S. Daoud, “Stability of the Parareal Time Discretization for Parabolic Inverse Problems,” in Domain Decomposition Methods in Science and Engineering XVI, vol. 55, O. B. Widlund and D. E. Keyes, Eds. Springer Berlin Heidelberg, 2007, pp. 275–282 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-34469-8_32
    @incollection{Daoud2007,
      author = {Daoud, Daoud S.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XVI}}},
      editor = {Widlund, Olof B. and Keyes, David E.},
      pages = {275--282},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Stability of the Parareal Time Discretization for Parabolic Inverse Problems}},
      url = {{http://dx.doi.org/10.1007/978-3-540-34469-8_32}},
      volume = {55},
      year = {2007}
    }
    
  2. M. J. Gander and M. Petcu, “Analysis of a Modified Parareal Algorithm for Second-Order Ordinary Differential Equations,” in AIP Conference Proceedings, 2007, vol. 936, p. 233 [Online]. Available at: http://dx.doi.org/10.1063/1.2790116
    @inproceedings{GanderPetcu2007,
      author = {Gander, Martin J. and Petcu, M.},
      booktitle = {{AIP Conference Proceedings}},
      pages = {233},
      title = {{Analysis of a Modified Parareal Algorithm for Second-Order Ordinary Differential Equations}},
      url = {{http://dx.doi.org/10.1063/1.2790116}},
      volume = {936},
      year = {2007}
    }
    
  3. M. J. Gander and S. Vandewalle, “Analysis of the Parareal Time-Parallel Time-Integration Method,” SIAM Journal on Scientific Computing, vol. 29, no. 2, pp. 556–578, 2007 [Online]. Available at: http://dx.doi.org/10.1137/05064607X
    @article{GanderVandewalle2007_SISC,
      author = {Gander, Martin J. and Vandewalle, Stefan},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {556--578},
      title = {{Analysis of the Parareal Time-Parallel Time-Integration Method}},
      url = {http://dx.doi.org/10.1137/05064607X},
      volume = {29},
      year = {2007}
    }
    
  4. M. J. Gander and S. Vandewalle, “On the Superlinear and Linear Convergence of the Parareal Algorithm,” in Domain Decomposition Methods in Science and Engineering, vol. 55, O. B. Widlund and D. E. Keyes, Eds. Springer Berlin Heidelberg, 2007, pp. 291–298 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-34469-8_34
    @incollection{GanderVandewalle2007,
      author = {Gander, Martin J. and Vandewalle, Stefan},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      editor = {Widlund, Olof B. and Keyes, David E.},
      pages = {291--298},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{On the Superlinear and Linear Convergence of the Parareal Algorithm}},
      url = {http://dx.doi.org/10.1007/978-3-540-34469-8_34},
      volume = {55},
      year = {2007}
    }
    
  5. D. Guibert and D. Tromeur-Dervout, “Adaptive Parareal for Systems of ODEs,” in Domain Decomposition Methods in Science and Engineering XVI, vol. 55, O. B. Widlund and D. E. Keyes, Eds. Springer Berlin Heidelberg, 2007, pp. 587–594 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-34469-8_73
    @incollection{GuibertTromeur2007,
      author = {Guibert, David and Tromeur-Dervout, Damien},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XVI}}},
      editor = {Widlund, OlofB. and Keyes, DavidE.},
      pages = {587--594},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Adaptive Parareal for Systems of {ODE}s}},
      url = {http://dx.doi.org/10.1007/978-3-540-34469-8_73},
      volume = {55},
      year = {2007}
    }
    
  6. D. Guibert and D. Tromeur-Dervout, “Parallel adaptive time domain decomposition for stiff systems of ODEs/DAEs,” Computers & Structures, vol. 85, no. 9, pp. 553–562, 2007 [Online]. Available at: http://dx.doi.org/10.1016/j.compstruc.2006.08.040
    @article{GuibertTromeur2007_CAS,
      author = {Guibert, David and Tromeur-Dervout, Damien},
      journal = {Computers \& Structures},
      number = {9},
      pages = {553--562},
      title = {{Parallel adaptive time domain decomposition for stiff systems of {ODE}s/{DAE}s}},
      url = {http://dx.doi.org/10.1016/j.compstruc.2006.08.040},
      volume = {85},
      year = {2007}
    }
    
  7. D. Guibert and D. Tromeur-Dervout, “Parallel deferred correction method for CFD problems,” in Parallel Computational Fluid Dynamics 2006, J. H. Kwon, A. Ecer, N. Satofuka, J. Periaux, and P. Fox, Eds. Amsterdam, 2007, pp. 131–138 [Online]. Available at: http://dx.doi.org/10.1016/B978-044453035-6/50019-5
    @incollection{GuibertTromeur2007_PCFD,
      address = {Amsterdam},
      author = {Guibert, David and Tromeur-Dervout, Damien},
      booktitle = {{Parallel Computational Fluid Dynamics 2006}},
      editor = {Kwon, J.H. and Ecer, A. and Satofuka, N. and Periaux, J. and Fox, P.},
      pages = {131--138},
      title = {{Parallel deferred correction method for {CFD} problems}},
      url = {http://dx.doi.org/10.1016/B978-044453035-6/50019-5},
      year = {2007}
    }
    
  8. S. M. Kaber and Y. Maday, “Parareal in time approximation of the Korteveg-deVries-Burgers’ equations,” PAMM, vol. 7, no. 1, pp. 1026403–1026404, 2007 [Online]. Available at: http://dx.doi.org/10.1002/pamm.200700574
    @article{KaberMaday2007,
      author = {Kaber, S. M. and Maday, Yvon},
      issue = {1},
      journal = {PAMM},
      pages = {1026403--1026404},
      title = {{Parareal in time approximation of the {Korteveg-deVries-Burgers}' equations}},
      url = {{http://dx.doi.org/10.1002/pamm.200700574}},
      volume = {7},
      year = {2007}
    }
    
  9. Y. Maday, J. Salomon, and G. Turinici, “Monotonic parareal control for quantum systems,” SIAM Journal on Numerical Analysis, vol. 45, no. 6, pp. 2468–2482, 2007 [Online]. Available at: http://dx.doi.org/10.1137/050647086
    @article{MadayEtAl2007,
      author = {Maday, Yvon and Salomon, Julien and Turinici, Gabriel},
      journal = {SIAM Journal on Numerical Analysis},
      number = {6},
      pages = {2468--2482},
      publisher = {SIAM},
      title = {{Monotonic parareal control for quantum systems}},
      url = {{http://dx.doi.org/10.1137/050647086}},
      volume = {45},
      year = {2007}
    }
    
top

2006

  1. C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello, “Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses,” International Journal for Numerical Methods in Engineering, vol. 67, no. 5, pp. 697–724, 2006 [Online]. Available at: http://dx.doi.org/10.1002/nme.1653
    @article{FarhatCortial2006,
      author = {Farhat, Charbel and Cortial, Julien and Dastillung, C. and Bavestrello, H.},
      issue = {5},
      journal = {International Journal for Numerical Methods in Engineering},
      pages = {697--724},
      title = {{Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses}},
      url = {http://dx.doi.org/10.1002/nme.1653},
      volume = {67},
      year = {2006}
    }
    
  2. N. R. Nassif, N. M. Karam, and Y. Soukiassian, “A New Approach for Solving Evolution Problems in Time-Parallel Way,” in Computational Science – ICCS 2006, vol. 3991, V. N. Alexandrov, G. D. Albada, P. M. A. Sloot, and J. Dongarra, Eds. Springer Berlin Heidelberg, 2006, pp. 148–155 [Online]. Available at: http://dx.doi.org/10.1007/11758501_24
    @incollection{NassifEtAl2006,
      author = {Nassif, Nabil R. and Karam, Noha Makhoul and Soukiassian, Yeran},
      booktitle = {{Computational Science -- ICCS 2006}},
      editor = {Alexandrov, Vassil N. and Albada, Geert Dick and Sloot, Peter M.A. and Dongarra, Jack},
      pages = {148--155},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{A New Approach for Solving Evolution Problems in Time-Parallel Way}},
      url = {{http://dx.doi.org/10.1007/11758501_24}},
      volume = {3991},
      year = {2006}
    }
    
  3. J. M. F. Trindade and J. C. F. Pereira, “Parallel-in-Time Simulation of Two-Dimensional, Unsteady, Incompressible Laminar Flows,” Numerical Heat Transfer, Part B: Fundamentals, vol. 50, no. 1, pp. 25–40, 2006 [Online]. Available at: http://dx.doi.org/10.1080/10407790500459379
    @article{Trindade2006,
      author = {Trindade, J. M. F. and Pereira, J. C. F.},
      journal = {Numerical Heat Transfer, Part B: Fundamentals},
      number = {1},
      pages = {25--40},
      title = {{Parallel-in-Time Simulation of Two-Dimensional, Unsteady, Incompressible Laminar Flows}},
      url = {http://dx.doi.org/10.1080/10407790500459379},
      volume = {50},
      year = {2006}
    }
    
  4. Y. Yu, A. Srinivasan, and N. Chandra, “Scalable Time-Parallelization of Molecular Dynamics Simulations in Nano Mechanics,” in Parallel Processing, 2006. ICPP 2006. International Conference on, 2006, pp. 119–126 [Online]. Available at: http://dx.doi.org/10.1109/ICPP.2006.64
    @inproceedings{Yu2006,
      author = {Yu, Yanan and Srinivasan, Ashok and Chandra, Namas},
      booktitle = {{Parallel Processing, 2006. ICPP 2006. International Conference on}},
      pages = {119--126},
      title = {{Scalable Time-Parallelization of Molecular Dynamics Simulations in Nano Mechanics}},
      url = {http://dx.doi.org/10.1109/ICPP.2006.64},
      year = {2006}
    }
    
top

2005

  1. G. Bal, “On the convergence and the stability of the parareal algorithm to solve partial differential equations,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 426–432 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_43
    @inproceedings{Bal2005,
      address = {Berlin},
      author = {Bal, Guillaume},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      editor = {Kornhuber, Ralf and {et al.}},
      pages = {426--432},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{On the convergence and the stability of the parareal algorithm to solve partial differential equations}},
      url = {http://dx.doi.org/10.1007/3-540-26825-1_43},
      volume = {40},
      year = {2005}
    }
    
  2. A. Borzì and R. Griesse, “Experiences with a space–time multigrid method for the optimal control of a chemical turbulence model,” International Journal for Numerical Methods in Fluids, vol. 47, no. 8-9, pp. 879–885, 2005 [Online]. Available at: http://dx.doi.org/10.1002/fld.904
    @article{Borzi2005,
      author = {Borzì, Alfio and Griesse, R.},
      journal = {International Journal for Numerical Methods in Fluids},
      number = {8-9},
      pages = {879--885},
      title = {{Experiences with a space--time multigrid method for the optimal control of a chemical turbulence model}},
      url = {http://dx.doi.org/10.1002/fld.904},
      volume = {47},
      year = {2005}
    }
    
  3. P. F. Fischer, F. Hecht, and Y. Maday, “A parareal in time semi-implicit approximation of the Navier-Stokes equations,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 433–440 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_44
    @inproceedings{FischerEtAl2005,
      address = {Berlin},
      author = {Fischer, P. F. and Hecht, F. and Maday, Yvon},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      editor = {Kornhuber, Ralf and {et al.}},
      pages = {433--440},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{A parareal in time semi-implicit approximation of the {N}avier-{S}tokes equations}},
      url = {{http://dx.doi.org/10.1007/3-540-26825-1_44}},
      volume = {40},
      year = {2005}
    }
    
  4. I. Garrido, M. S. Espedal, and G. E. Fladmark, “A Convergent Algorithm for Time Parallelization Applied to Reservoir Simulation,” in Domain Decomposition Methods in Science and Engineering, vol. 40, T. J. Barth and al., Eds. Springer Berlin Heidelberg, 2005, pp. 469–476 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_48
    @incollection{GarridoEtAl2005,
      author = {Garrido, Izaskun and Espedal, Magne S. and Fladmark, Gunnar E.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      editor = {Barth, Timothy J. and {al.}},
      pages = {469--476},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{A Convergent Algorithm for Time Parallelization Applied to Reservoir Simulation}},
      url = {http://dx.doi.org/10.1007/3-540-26825-1_48},
      volume = {40},
      year = {2005}
    }
    
  5. Y. Maday and G. Turinici, “The parareal in time iterative solver: A further direction to parallel implementation,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 441–448 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_45
    @inproceedings{MadayTurinici2005,
      address = {Berlin},
      author = {Maday, Yvon and Turinici, Gabriel},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      editor = {Kornhuber, Ralf and {et al.}},
      pages = {441--448},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{The parareal in time iterative solver: A further direction to parallel implementation}},
      url = {{http://dx.doi.org/10.1007/3-540-26825-1_45}},
      volume = {40},
      year = {2005}
    }
    
  6. B. A. Schmitt, R. Weiner, and H. Podhaisky, “Multi-Implicit Peer Two-Step W-Methods for Parallel Time Integration,” BIT Numerical Mathematics, vol. 45, no. 1, pp. 197–217, 2005 [Online]. Available at: http://dx.doi.org/10.1007/s10543-005-2635-y
    @article{SchmittEtAl2005,
      author = {Schmitt, BernhardA. and Weiner, Ruediger and Podhaisky, Helmut},
      doi = {10.1007/s10543-005-2635-y},
      journal = {BIT Numerical Mathematics},
      number = {1},
      pages = {197--217},
      title = {Multi-Implicit Peer Two-Step W-Methods for Parallel Time Integration},
      url = {http://dx.doi.org/10.1007/s10543-005-2635-y},
      volume = {45},
      year = {2005}
    }
    
  7. A. Srinivasan and N. Chandra, “Latency tolerance through parallelization of time in scientific applications,” Parallel Computing, vol. 31, no. 7, pp. 777–796, 2005 [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2005.04.008
    @article{Srinivasan2005,
      author = {Srinivasan, Ashok and Chandra, Namas},
      journal = {Parallel Computing},
      number = {7},
      pages = {777--796},
      title = {{Latency tolerance through parallelization of time in scientific applications}},
      url = {http://dx.doi.org/10.1016/j.parco.2005.04.008},
      volume = {31},
      year = {2005}
    }
    
  8. A. Srinivasan, Y. Yu, and N. Chandra, “Application of Reduce Order Modeling to Time Parallelization,” in High Performance Computing – HiPC 2005, vol. 3769, D. A. Bader, M. Parashar, V. Sridhar, and V. K. Prasanna, Eds. Springer Berlin Heidelberg, 2005, pp. 106–117 [Online]. Available at: http://dx.doi.org/10.1007/11602569_15
    @incollection{Srinivasan2005_HIPC,
      author = {Srinivasan, Ashok and Yu, Yanan and Chandra, Namas},
      booktitle = {{High Performance Computing -- HiPC 2005}},
      editor = {Bader, David A. and Parashar, Manish and Sridhar, Varadarajan and Prasanna, Viktor K.},
      isbn = {978-3-540-30936-9},
      pages = {106--117},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{Application of Reduce Order Modeling to Time Parallelization}},
      url = {http://dx.doi.org/10.1007/11602569_15},
      volume = {3769},
      year = {2005}
    }
    
  9. G. A. Staff and E. M. Rønquist, “Stability of the parareal algorithm,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 449–456 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_46
    @inproceedings{StaffRonquist2005,
      address = {Berlin},
      author = {Staff, G. A. and Rønquist, Einar M.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      editor = {Kornhuber, Ralf and {et al.}},
      pages = {449--456},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Stability of the parareal algorithm}},
      url = {http://dx.doi.org/10.1007/3-540-26825-1_46},
      volume = {40},
      year = {2005}
    }
    
top

2000 - 2004

  1. M. A. Botchev and H. A. van der Vorst, “A parallel nearly implicit time-stepping scheme,” Journal of Computational and Applied Mathematics, vol. 137, no. 2, pp. 229–243, 2001 [Online]. Available at: http://dx.doi.org/10.1016/S0377-0427(01)00358-2
    @article{BotchevVorst2001,
      author = {Botchev, M. A. and van der Vorst, H. A.},
      journal = {Journal of Computational and Applied Mathematics},
      number = {2},
      pages = {229--243},
      title = {{A parallel nearly implicit time-stepping scheme}},
      url = {http://dx.doi.org/10.1016/S0377-0427(01)00358-2},
      volume = {137},
      year = {2001}
    }
    
  2. J.-L. Lions, Y. Maday, and G. Turinici, “A ‘parareal’ in time discretization of PDE’s,” Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, vol. 332, pp. 661–668, 2001 [Online]. Available at: http://dx.doi.org/10.1016/S0764-4442(00)01793-6
    @article{LionsEtAl2001,
      author = {Lions, J.-L. and Maday, Yvon and Turinici, Gabriel},
      journal = {Comptes Rendus de l'Académie des Sciences - Series I - Mathematics},
      pages = {661--668},
      title = {{A "parareal" in time discretization of {PDE}'s}},
      url = {http://dx.doi.org/10.1016/S0764-4442(00)01793-6},
      volume = {332},
      year = {2001}
    }
    
  3. L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah, “Parallel-in-time molecular-dynamics simulations,” Phys. Rev. E, vol. 66, no. 5, p. 057701, 2002 [Online]. Available at: http://link.aps.org/doi/10.1103/PhysRevE.66.057701
    @article{BafficoEtAl2002,
      author = {Baffico, L. and Bernard, S. and Maday, Yvon and Turinici, Gabriel and Zérah, G.},
      issue = {5},
      journal = {Phys. Rev. E},
      numpages = {4},
      pages = {057701},
      title = {{Parallel-in-time molecular-dynamics simulations}},
      url = {http://link.aps.org/doi/10.1103/PhysRevE.66.057701},
      volume = {66},
      year = {2002}
    }
    
  4. G. Bal and Y. Maday, “A ‘Parareal’ time discretization for non-linear PDE’s with application to the pricing of an American Put,” in Recent Developments in Domain Decomposition Methods, vol. 23, L. Pavarino and A. Toselli, Eds. Springer Berlin, 2002, pp. 189–202 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-56118-4_12
    @incollection{BalMaday2002,
      author = {Bal, Guillaume and Maday, Yvon},
      booktitle = {{Recent Developments in Domain Decomposition Methods}},
      editor = {Pavarino, L. and Toselli, A.},
      pages = {189--202},
      publisher = {Springer Berlin},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{A "Parareal" time discretization for non-linear {PDE}'s with application to the pricing of an American Put}},
      url = {http://dx.doi.org/10.1007/978-3-642-56118-4_12},
      volume = {23},
      year = {2002}
    }
    
  5. Y. Maday and G. Turinici, “A parareal in time procedure for the control of partial differential equations,” Comptes Rendus Mathématique, vol. 335, no. 4, pp. 387–392, 2002 [Online]. Available at: http://dx.doi.org/10.1016/S1631-073X(02)02467-6
    @article{MadayTurinici2002,
      author = {Maday, Yvon and Turinici, Gabriel},
      journal = {Comptes Rendus Mathématique},
      number = {4},
      pages = {387--392},
      title = {{A parareal in time procedure for the control of partial differential equations}},
      url = {http://dx.doi.org/10.1016/S1631-073X(02)02467-6},
      volume = {335},
      year = {2002}
    }
    
  6. C. Farhat and M. Chandesris, “Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications,” International Journal for Numerical Methods in Engineering, vol. 58, no. 9, pp. 1397–1434, 2003 [Online]. Available at: http://dx.doi.org/10.1002/nme.860
    @article{FarhatEtAl2003,
      author = {Farhat, Charbel and Chandesris, M.},
      journal = {International Journal for Numerical Methods in Engineering},
      number = {9},
      pages = {1397--1434},
      title = {{Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications}},
      url = {http://dx.doi.org/10.1002/nme.860},
      volume = {58},
      year = {2003}
    }
    
  7. Y. Maday and G. Turinici, “Parallel in time algorithms for quantum control: Parareal time discretization scheme,” Int. J. Quant. Chem., vol. 93, no. 3, pp. 223–228, 2003 [Online]. Available at: http://dx.doi.org/10.1002/qua.10554
    @article{MadayTurinici2003,
      author = {Maday, Yvon and Turinici, Gabriel},
      journal = {Int. J. Quant. Chem.},
      number = {3},
      pages = {223--228},
      title = {{Parallel in time algorithms for quantum control: Parareal time discretization scheme}},
      url = {http://dx.doi.org/10.1002/qua.10554},
      volume = {93},
      year = {2003}
    }
    
  8. J. M. F. Trindade and J. C. F. Pereira, “Parallel-in-time simulation of the unsteady Navier-Stokes equations for incompressible flow,” International Journal for Numerical Methods in Fluids, vol. 45, no. 10, pp. 1123–1136, 2004 [Online]. Available at: http://dx.doi.org/10.1002/fld.732
    @article{Trindade2004,
      author = {Trindade, J. M. F. and Pereira, J. C. F.},
      journal = {International Journal for Numerical Methods in Fluids},
      number = {10},
      pages = {1123--1136},
      title = {{Parallel-in-time simulation of the unsteady {N}avier-{S}tokes equations for incompressible flow}},
      url = {http://dx.doi.org/10.1002/fld.732},
      volume = {45},
      year = {2004}
    }
    
top

1995 - 1999

  1. A. Deshpande, S. Malhotra, M. Schultz, and C. Douglas, “A rigorous analysis of time domain parallelism,” Parallel Algorithms and Applications, vol. 6, no. 1, pp. 53–62, 1995 [Online]. Available at: http://dx.doi.org/10.1080/10637199508915498
    @article{DeshpandeEtAl1995,
      author = {Deshpande, A. and Malhotra, S. and Schultz, M. and Douglas, C.},
      journal = {Parallel Algorithms and Applications},
      number = {1},
      pages = {53--62},
      publisher = {Taylor \& Francis},
      title = {{A rigorous analysis of time domain parallelism}},
      url = {http://dx.doi.org/10.1080/10637199508915498},
      volume = {6},
      year = {1995}
    }
    
  2. G. Horton, S. Vandewalle, and P. Worley, “An Algorithm with Polylog Parallel Complexity for Solving Parabolic Partial Differential Equations,” SIAM Journal on Scientific Computing, vol. 16, no. 3, pp. 531–541, 1995 [Online]. Available at: http://dx.doi.org/10.1137/0916034
    @article{HortonEtAl1995,
      author = {Horton, Graham and Vandewalle, Stefan and Worley, P.},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {531--541},
      title = {{An Algorithm with Polylog Parallel Complexity for Solving Parabolic Partial Differential Equations}},
      url = {http://dx.doi.org/10.1137/0916034},
      volume = {16},
      year = {1995}
    }
    
  3. G. Horton and S. Vandewalle, “A Space-Time Multigrid Method for Parabolic Partial Differential Equations,” SIAM Journal on Scientific Computing, vol. 16, no. 4, pp. 848–864, 1995 [Online]. Available at: http://dx.doi.org/10.1137/0916050
    @article{HortonVandewalle1995,
      author = {Horton, Graham and Vandewalle, Stefan},
      journal = {SIAM Journal on Scientific Computing},
      number = {4},
      pages = {848--864},
      title = {{A Space-Time Multigrid Method for Parabolic Partial Differential Equations}},
      url = {http://dx.doi.org/10.1137/0916050},
      volume = {16},
      year = {1995}
    }
    
  4. K. R. Jackson and S. P. Nørsett, “The Potential for Parallelism in Runge–Kutta Methods. Part 1: RK Formulas in Standard Form,” SIAM Journal on Numerical Analysis, vol. 32, no. 1, pp. 49–82, 1995 [Online]. Available at: http://dx.doi.org/10.1137/0732002
    @article{JacksonEtAl1995,
      author = {Jackson, K. R. and N{\o}rsett, S. P.},
      title = {The Potential for Parallelism in Runge–Kutta Methods. Part 1: RK Formulas in Standard Form},
      journal = {SIAM Journal on Numerical Analysis},
      volume = {32},
      number = {1},
      pages = {49-82},
      year = {1995},
      doi = {10.1137/0732002},
      url = {http://dx.doi.org/10.1137/0732002}
    }
    
  5. S. Vandewalle and G. Horton, “Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods,” Computing, vol. 54, no. 4, pp. 317–330, 1995 [Online]. Available at: http://dx.doi.org/10.1007/BF02238230
    @article{VandewalleHorton1995,
      author = {Vandewalle, Stefan and Horton, Graham},
      journal = {Computing},
      number = {4},
      pages = {317--330},
      title = {{Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods}},
      url = {http://dx.doi.org/10.1007/BF02238230},
      volume = {54},
      year = {1995}
    }
    
  6. K. Burrage, “Parallel methods for systems of ordinary differential equations,” in Applications on Advanced Architecture Computers, G. Astfalk, Ed. Society for Industrial and Applied Mathematics, 1996, pp. 101–120 [Online]. Available at: http://dx.doi.org/10.1137/1.9780898719659.ch10
    @incollection{Burrage1996,
      author = {Burrage, Kevin},
      booktitle = {{Applications on Advanced Architecture Computers}},
      editor = {Astfalk, Greg},
      location = {Philadelphia},
      pages = {101--120},
      publisher = {Society for Industrial and Applied Mathematics},
      title = {{Parallel methods for systems of ordinary differential equations}},
      url = {{http://dx.doi.org/10.1137/1.9780898719659.ch10}},
      year = {1996}
    }
    
  7. J. Janssen and S. Vandewalle, “Multigrid Waveform Relaxation on Spatial Finite Element Meshes: The Discrete-Time Case,” SIAM Journal on Scientific Computing, vol. 17, no. 1, pp. 133–155, 1996 [Online]. Available at: http://dx.doi.org/10.1137/0917011
    @article{JanssenVandewalle1996,
      author = {Janssen, J. and Vandewalle, Stefan},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {133--155},
      title = {{Multigrid Waveform Relaxation on Spatial Finite Element Meshes: The Discrete-Time Case}},
      url = {{http://dx.doi.org/10.1137/0917011}},
      volume = {17},
      year = {1996}
    }
    
  8. S. Ta’asan and H. Zhang, “Fourier-Laplace analysis of the multigrid waveform relaxation method for hyperbolic equations,” BIT Numerical Mathematics, vol. 36, no. 4, pp. 831–841, 1996 [Online]. Available at: http://dx.doi.org/10.1007/BF01733794
    @article{TaasanZhang1996,
      author = {Ta'asan, Shlomo and Zhang, Hong},
      journal = {BIT Numerical Mathematics},
      number = {4},
      pages = {831--841},
      title = {{Fourier-Laplace analysis of the multigrid waveform relaxation method for hyperbolic equations}},
      url = {http://dx.doi.org/10.1007/BF01733794},
      volume = {36},
      year = {1996}
    }
    
  9. K. Burrage, “Parallel methods for ODEs,” Advances in Computational Mathematics, vol. 7, pp. 1–3, 1997 [Online]. Available at: http://dx.doi.org/10.1023/A:1018997130884
    @article{Burrage1997,
      author = {Burrage, Kevin},
      journal = {Advances in Computational Mathematics},
      pages = {1--3},
      title = {{Parallel methods for {ODE}s}},
      url = {http://dx.doi.org/10.1023/A:1018997130884},
      volume = {7},
      year = {1997}
    }
    
  10. M. J. Gander and A. M. Stuart, “Space-Time Continuous Analysis of Waveform Relaxation for the Heat Equation,” SIAM Journal on Scientific Computing, vol. 19, no. 6, pp. 2014–2031, 1998 [Online]. Available at: http://dx.doi.org/10.1137/S1064827596305337
    @article{Gander1998,
      author = {Gander, Martin J. and Stuart, Andrew M.},
      journal = {SIAM Journal on Scientific Computing},
      number = {6},
      pages = {2014--2031},
      title = {{Space-Time Continuous Analysis of Waveform Relaxation for the Heat Equation}},
      url = {http://dx.doi.org/10.1137/S1064827596305337},
      volume = {19},
      year = {1998}
    }
    
top

1990 - 1994

  1. P. J. Van Der Houwen and B. P. Sommeijer, “Parallel iteration of high-order Runge-Kutta methods with stepsize control,” Journal of Computational and Applied Mathematics, vol. 29, no. 1, pp. 111–127, 1990 [Online]. Available at: http://dx.doi.org/10.1016/0377-0427(90)90200-J
    @article{VanderHouwen1990,
      title = {{Parallel iteration of high-order Runge-Kutta methods with stepsize control}},
      journal = {Journal of Computational and Applied Mathematics},
      volume = {29},
      number = {1},
      pages = {111 - 127},
      year = {1990},
      url = {http://dx.doi.org/10.1016/0377-0427(90)90200-J},
      author = {Van Der Houwen, P.J. and Sommeijer, B.P.}
    }
    
  2. D. E. Womble, “A time-stepping algorithm for parallel computers,” SIAM Journal on Scientific and Statistical Computing, vol. 11, no. 5, pp. 824–837, 1990 [Online]. Available at: http://dx.doi.org/10.1137/0911049
    @article{Womble1990,
      author = {Womble, D. E},
      journal = {SIAM Journal on Scientific and Statistical Computing},
      number = {5},
      pages = {824--837},
      title = {{A time-stepping algorithm for parallel computers}},
      url = {http://dx.doi.org/10.1137/0911049},
      volume = {11},
      year = {1990}
    }
    
  3. G. Horton, “Time-Parallel Multigrid Solution of the Navier-Stokes Equations,” in Applications of Supercomputers in Engineering II, C. A. Brebbia, A. Peters, and D. Howard, Eds. Springer Netherlands, 1991, pp. 435–445 [Online]. Available at: http://dx.doi.org/10.1007/978-94-011-3660-0_31
    @incollection{Horton1991,
      author = {Horton, Graham},
      booktitle = {{Applications of Supercomputers in Engineering II}},
      editor = {Brebbia, C.A. and Peters, A. and Howard, D.},
      pages = {435--445},
      publisher = {Springer Netherlands},
      title = {{Time-Parallel Multigrid Solution of the {N}avier-{S}tokes Equations}},
      url = {http://dx.doi.org/10.1007/978-94-011-3660-0_31},
      year = {1991}
    }
    
  4. K. R. Jackson, “A SURVEY OF PARALLEL NUMERICAL METHODS FOR INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS,” IEEE Transactions on Magnetics, vol. 27, no. 5, pp. 3792–3797, 1991 [Online]. Available at: http://dx.doi.org/10.1109/20.104928
    @article{Jackson1991,
      author = {Jackson, Kenneth R.},
      title = {A SURVEY OF PARALLEL NUMERICAL METHODS FOR INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS},
      journal = {IEEE Transactions on Magnetics},
      volume = {27},
      issue = {5},
      year = {1991},
      pages = {3792--3797},
      doi = {10.1109/20.104928},
      url = {http://dx.doi.org/10.1109/20.104928}
    }
    
  5. S. Murata, N. Satofuka, and T. Kushiyama, “Parabolic multi-grid method for incompressible viscous flows using a group explicit relaxation scheme,” Computers & Fluids, vol. 19, no. 1, pp. 33–41, 1991 [Online]. Available at: http://dx.doi.org/10.1016/0045-7930(91)90005-3
    @article{MurataEtAl1991,
      author = {Murata, S. and Satofuka, N. and Kushiyama, T.},
      journal = {Computers \& Fluids},
      number = {1},
      pages = {33--41},
      title = {{Parabolic multi-grid method for incompressible viscous flows using a group explicit relaxation scheme}},
      url = {http://dx.doi.org/10.1016/0045-7930(91)90005-3},
      volume = {19},
      year = {1991}
    }
    
  6. P. J. van der Houwen and B. P. Sommeijer, “Iterated Runge-€“Kutta Methods on Parallel Computers,” SIAM Journal on Scientific and Statistical Computing, vol. 12, no. 5, pp. 1000–1028, 1991 [Online]. Available at: http://dx.doi.org/10.1137/0912054
    @article{VanderHouwen1991,
      author = {van der Houwen, P. J. and Sommeijer, B. P.},
      title = {{Iterated Runge-€“Kutta Methods on Parallel Computers}},
      journal = {SIAM Journal on Scientific and Statistical Computing},
      volume = {12},
      number = {5},
      pages = {1000--1028},
      year = {1991},
      doi = {10.1137/0912054},
      url = {http://dx.doi.org/10.1137/0912054}
    }
    
  7. G. Horton, “The time-parallel multigrid method,” Communications in Applied Numerical Methods, vol. 8, no. 9, pp. 585–595, 1992 [Online]. Available at: http://dx.doi.org/10.1002/cnm.1630080906
    @article{Horton1992,
      author = {Horton, Graham},
      journal = {Communications in Applied Numerical Methods},
      number = {9},
      pages = {585--595},
      title = {{The time-parallel multigrid method}},
      url = {http://dx.doi.org/10.1002/cnm.1630080906},
      volume = {8},
      year = {1992}
    }
    
  8. G. Horton and R. Knirsch, “A time-parallel multigrid-extrapolation method for parabolic partial differential equations,” Parallel Computing, vol. 18, no. 1, pp. 21–29, 1992 [Online]. Available at: http://dx.doi.org/10.1016/0167-8191(92)90108-J
    @article{HortonKnirsch1992,
      author = {Horton, Graham and Knirsch, Ralf},
      journal = {Parallel Computing},
      number = {1},
      pages = {21--29},
      title = {{A time-parallel multigrid-extrapolation method for parabolic partial differential equations}},
      url = {http://dx.doi.org/10.1016/0167-8191(92)90108-J},
      volume = {18},
      year = {1992}
    }
    
  9. G. Horton, R. Knirsch, and H. Vollath, “The time-parallel solution of parabolic partial differential equations using the frequency-filtering method,” in Parallel Processing: CONPAR 92 –VAPP V, vol. 634, L. Bougé, M. Cosnard, Y. Robert, and D. Trystram, Eds. Springer Berlin Heidelberg, 1992, pp. 205–216 [Online]. Available at: http://dx.doi.org/10.1007/3-540-55895-0_415
    @incollection{HortonEtAl1992,
      author = {Horton, Graham and Knirsch, Ralf and Vollath, Hermann},
      booktitle = {{Parallel Processing: CONPAR 92 --VAPP V}},
      editor = {Bougé, Luc and Cosnard, Michel and Robert, Yves and Trystram, Denis},
      pages = {205--216},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{The time-parallel solution of parabolic partial differential equations using the frequency-filtering method}},
      url = {http://dx.doi.org/10.1007/3-540-55895-0_415},
      volume = {634},
      year = {1992}
    }
    
  10. S. Vandewalle and R. Piessens, “Efficient Parallel Algorithms for Solving Initial-Boundary Value and Time-Periodic Parabolic Partial Differential Equations,” SIAM Journal on Scientific and Statistical Computing, vol. 13, no. 6, pp. 1330–1346, 1992 [Online]. Available at: http://dx.doi.org/10.1137/0913075
    @article{VandewallePiessens1992,
      author = {Vandewalle, Stefan and Piessens, R.},
      journal = {SIAM Journal on Scientific and Statistical Computing},
      number = {6},
      pages = {1330--1346},
      title = {{Efficient Parallel Algorithms for Solving Initial-Boundary Value and Time-Periodic Parabolic Partial Differential Equations}},
      url = {http://dx.doi.org/10.1137/0913075},
      volume = {13},
      year = {1992}
    }
    
  11. K. Burrage, “Parallel methods for initial value problems,” Applied Numerical Mathematics, vol. 11, no. 1–3, pp. 5–25, 1993 [Online]. Available at: http://dx.doi.org/10.1016/0168-9274(93)90037-R
    @article{Burrage1993,
      author = {Burrage, Kevin},
      journal = {Applied Numerical Mathematics},
      number = {1--3},
      pages = {5--25},
      title = {{Parallel methods for initial value problems}},
      url = {http://dx.doi.org/10.1016/0168-9274(93)90037-R},
      volume = {11},
      year = {1993}
    }
    
  12. P. Chartier and B. Philippe, “A parallel shooting technique for solving dissipative ODE’s,” Computing, vol. 51, no. 3-4, pp. 209–236, 1993 [Online]. Available at: http://dx.doi.org/10.1007/BF02238534
    @article{ChartierPhilippe1993,
      author = {Chartier, P. and Philippe, B.},
      journal = {Computing},
      number = {3-4},
      pages = {209--236},
      title = {{A parallel shooting technique for solving dissipative {ODE}'s}},
      url = {http://dx.doi.org/10.1007/BF02238534},
      volume = {51},
      year = {1993}
    }
    
  13. A. Fijany, “Time Parallel Algorithms for Solution of Linear Parabolic PDEs,” in Parallel Processing, 1993. ICPP 1993. International Conference on, 1993, vol. 3, pp. 51–56 [Online]. Available at: http://dx.doi.org/10.1109/ICPP.1993.179
    @inproceedings{Fijany1993,
      author = {Fijany, Amir},
      booktitle = {{Parallel Processing, 1993. ICPP 1993. International Conference on}},
      pages = {51--56},
      title = {{Time Parallel Algorithms for Solution of Linear Parabolic {PDE}s}},
      url = {http://dx.doi.org/10.1109/ICPP.1993.179},
      volume = {3},
      year = {1993}
    }
    
  14. C. Oosterlee and P. Wesseling, “Multigrid schemes for time-dependent incompressible Navier-Stokes equations,” IMPACT of Computing in Science and Engineering, vol. 5, no. 3, pp. 153–175, 1993 [Online]. Available at: http://dx.doi.org/10.1006/icse.1993.1007
    @article{OosterleeWesseling1993,
      author = {Oosterlee, C. and Wesseling, P.},
      journal = {IMPACT of Computing in Science and Engineering},
      number = {3},
      pages = {153--175},
      title = {{Multigrid schemes for time-dependent incompressible {N}avier-{S}tokes equations}},
      url = {http://dx.doi.org/10.1006/icse.1993.1007},
      volume = {5},
      year = {1993}
    }
    
  15. B. P. Sommeijer, “Parallel-iterated Runge-Kutta methods for stiff ordinary differential equations,” Journal of Computational and Applied Mathematics, vol. 45, no. 1, pp. 151–168, 1993 [Online]. Available at: http://dx.doi.org/10.1016/0377-0427(93)90271-C
    @article{Sommeijer1993,
      title = {{Parallel-iterated Runge-Kutta methods for stiff ordinary differential equations}},
      journal = {{Journal of Computational and Applied Mathematics}},
      volume = {45},
      number = {1},
      pages = {151--168},
      year = {1993},
      url = {http://dx.doi.org/10.1016/0377-0427(93)90271-C},
      author = {Sommeijer, B.P.}
    }
    
  16. P. J. van der Houwen and B. P. Sommeijer, “Analysis of parallel diagonally implicit iteration of Runge-Kutta methods,” Applied Numerical Mathematics, vol. 11, no. 1, pp. 169–188, 1993 [Online]. Available at: http://dx.doi.org/10.1016/0168-9274(93)90047-U
    @article{VanderHouwen1993,
      title = {{Analysis of parallel diagonally implicit iteration of Runge-Kutta methods}},
      journal = {Applied Numerical Mathematics},
      volume = {11},
      number = {1},
      pages = {169--188},
      year = {1993},
      url = {http://dx.doi.org/10.1016/0168-9274(93)90047-U},
      author = {van der Houwen, P.J. and Sommeijer, B.P.}
    }
    
  17. H. G. Bock, W. Hackbusch, and W. Rannacher, Eds., Parallel multigrid waveform relaxation for parabolic problems. Stuttgart: B. G. Teubner, 1993 [Online]. Available at: http://dx.doi.org/10.1007/978-3-322-94761-1
    @book{Vandewalle1993,
      address = {Stuttgart},
      address2 = {Stuttgart},
      editor = {Bock, H. G. and Hackbusch, W. and Rannacher, W.},
      publisher = {B. G. Teubner},
      series = {{Teubner Skripten zur Numerik}},
      title = {{Parallel multigrid waveform relaxation for parabolic problems}},
      url = {{http://dx.doi.org/10.1007/978-3-322-94761-1}},
      year = {1993}
    }
    
  18. M. Kiehl, “Parallel multiple shooting for the solution of initial value problems,” Parallel Computing, vol. 20, no. 3, pp. 275–295, 1994 [Online]. Available at: http://dx.doi.org/10.1016/S0167-8191(06)80013-X
    @article{Kiehl1994,
      author = {Kiehl, M.},
      journal = {Parallel Computing},
      number = {3},
      pages = {275--295},
      title = {{Parallel multiple shooting for the solution of initial value problems}},
      url = {http://dx.doi.org/10.1016/S0167-8191(06)80013-X},
      volume = {20},
      year = {1994}
    }
    
  19. N. Toomarian, A. Fijany, and J. Barmen, “Time-parallel solution of linear partial differential equations on the Intel Touchstone Delta supercomputer,” Concurrency: Practice and Experience, vol. 6, no. 8, pp. 641–652, 1994 [Online]. Available at: http://dx.doi.org/10.1002/cpe.4330060803
    @article{Toomarian1994,
      author = {Toomarian, Nikzad and Fijany, Amir and Barmen, Jacob},
      journal = {Concurrency: Practice and Experience},
      number = {8},
      pages = {641--652},
      title = {{Time-parallel solution of linear partial differential equations on the {I}ntel {T}ouchstone {D}elta supercomputer}},
      url = {http://dx.doi.org/10.1002/cpe.4330060803},
      volume = {6},
      year = {1994}
    }
    
  20. S. Vandewalle and G. Horton, “Multicomputer-Multigrid Solution of Parabolic Partial Differential Equations,” in Multigrid Methods IV, vol. 116, P. W. Hemker and P. Wesseling, Eds. Birkhäuser Basel, 1994, pp. 97–109 [Online]. Available at: http://dx.doi.org/10.1007/978-3-0348-8524-9_7
    @incollection{VandewalleHorton1994,
      author = {Vandewalle, Stefan and Horton, Graham},
      booktitle = {{Multigrid Methods IV}},
      editor = {Hemker, P.W. and Wesseling, P.},
      pages = {97--109},
      publisher = {Birkhäuser Basel},
      series = {{ISNM International Series of Numerical Mathematics}},
      title = {{Multicomputer-Multigrid Solution of Parabolic Partial Differential Equations}},
      url = {http://dx.doi.org/10.1007/978-3-0348-8524-9_7},
      volume = {116},
      year = {1994}
    }
    
  21. S. G. Vandewalle and E. F. Van de Velde, “Space-time concurrent multigrid waveform relaxation,” Annals of Numerical Mathematics, vol. 1, no. 1-4, pp. 347–360, 1994 [Online]. Available at: http://dx.doi.org/10.13140/2.1.1146.1761
    @article{VandewalleVandeVelde1994,
      author = {Vandewalle, {Stefan G.} and {Van de Velde}, {Eric F.}},
      journal = {Annals of Numerical Mathematics},
      number = {1-4},
      pages = {347-360},
      title = {{Space-time concurrent multigrid waveform relaxation}},
      url = {http://dx.doi.org/10.13140/2.1.1146.1761},
      volume = {1},
      year = {1994}
    }
    
top

Pre 1990

  1. J. Nievergelt, “Parallel methods for integrating ordinary differential equations,” Commun. ACM, vol. 7, no. 12, pp. 731–733, 1964 [Online]. Available at: http://dx.doi.org/10.1145/355588.365137
    @article{Nievergelt1964,
      author = {Nievergelt, J.},
      journal = {Commun. ACM},
      number = {12},
      pages = {731--733},
      title = {{Parallel methods for integrating ordinary differential equations}},
      url = {http://dx.doi.org/10.1145/355588.365137},
      volume = {7},
      year = {1964}
    }
    
  2. W. L. Miranker and W. Liniger, “Parallel methods for the numerical integration of ordinary differential equations,” Mathematics of Computation, vol. 21, no. 99, pp. 303–320, 1967 [Online]. Available at: http://dx.doi.org/10.1090/S0025-5718-1967-0223106-8
    @article{MirankerLiniger1967,
      author = {Miranker, Willard L and Liniger, Werner},
      journal = {Mathematics of Computation},
      number = {99},
      pages = {303--320},
      title = {{Parallel methods for the numerical integration of ordinary differential equations}},
      url = {http://dx.doi.org/10.1090/S0025-5718-1967-0223106-8},
      volume = {21},
      year = {1967}
    }
    
  3. P. B. Worland, “Parallel Methods for the Numerical Solution of Ordinary Differential Equations,” Computers, IEEE Transactions on, vol. C-25, no. 10, pp. 1045–1048, 1976 [Online]. Available at: http://dx.doi.org/10.1109/TC.1976.1674545
    @article{Worland1976,
      author = {Worland, P.B.},
      journal = {Computers, IEEE Transactions on},
      number = {10},
      pages = {1045--1048},
      title = {{Parallel Methods for the Numerical Solution of Ordinary Differential Equations}},
      url = {http://dx.doi.org/10.1109/TC.1976.1674545},
      volume = {C-25},
      year = {1976}
    }
    
  4. M. A. Franklin, “Parallel Solution of Ordinary Differential Equations,” IEEE Transactions on Computers, vol. C-27, no. 5, pp. 413–420, 1978 [Online]. Available at: http://dx.doi.org/10.1109/TC.1978.1675121
    @article{Franklin1978,
      author = {Franklin, M. A.},
      journal = {IEEE Transactions on Computers},
      title = {Parallel Solution of Ordinary Differential Equations},
      year = {1978},
      volume = {C-27},
      number = {5},
      pages = {413-420},
      doi = {10.1109/TC.1978.1675121},
      url = {http://dx.doi.org/10.1109/TC.1978.1675121}
    }
    
  5. W. Hackbusch, “Parabolic multi-grid methods,” Computing Methods in Applied Sciences and Engineering, VI, pp. 189–197, 1984 [Online]. Available at: http://dl.acm.org/citation.cfm?id=4673.4714
    @article{Hackbusch1984,
      author = {Hackbusch, W.},
      journal = {Computing Methods in Applied Sciences and Engineering, VI},
      pages = {189--197},
      title = {{Parabolic multi-grid methods}},
      url = {http://dl.acm.org/citation.cfm?id=4673.4714},
      year = {1984}
    }
    
  6. M. Chu and H. Hamilton, “Parallel Solution of ODE’s by Multiblock Methods,” SIAM Journal on Scientific and Statistical Computing, vol. 8, no. 3, pp. 342–353, 1987 [Online]. Available at: http://dx.doi.org/10.1137/0908039
    @article{ChuHamilton1987,
      author = {Chu, M. and Hamilton, H.},
      journal = {SIAM Journal on Scientific and Statistical Computing},
      number = {3},
      pages = {342--353},
      title = {{Parallel Solution of {ODE}'s by Multiblock Methods}},
      url = {http://dx.doi.org/10.1137/0908039},
      volume = {8},
      year = {1987}
    }
    
  7. C. Lubich and A. Ostermann, “Multi-grid dynamic iteration for parabolic equations,” BIT Numerical Mathematics, vol. 27, no. 2, pp. 216–234, 1987 [Online]. Available at: http://dx.doi.org/10.1007/BF01934186
    @article{LubichOstermann1987,
      author = {Lubich, Ch. and Ostermann, A.},
      issn = {0006-3835},
      journal = {BIT Numerical Mathematics},
      number = {2},
      pages = {216--234},
      title = {{Multi-grid dynamic iteration for parabolic equations}},
      url = {http://dx.doi.org/10.1007/BF01934186},
      volume = {27},
      year = {1987}
    }
    
  8. C. W. Gear, “Parallel methods for ordinary differential equations,” CALCOLO, vol. 25, no. 1-2, pp. 1–20, 1988 [Online]. Available at: http://dx.doi.org/10.1007/BF02575744
    @article{Gear1988,
      author = {Gear, C. W.},
      journal = {CALCOLO},
      number = {1-2},
      pages = {1--20},
      title = {{Parallel methods for ordinary differential equations}},
      url = {http://dx.doi.org/10.1007/BF02575744},
      volume = {25},
      year = {1988}
    }
    
  9. A. Bellen and M. Zennaro, “Parallel algorithms for initial-value problems for difference and differential equations,” Journal of Computational and Applied Mathematics, vol. 25, no. 3, pp. 341–350, 1989 [Online]. Available at: http://dx.doi.org/10.1016/0377-0427(89)90037-X
    @article{BellenZennaro1989,
      author = {Bellen, Alfredo and Zennaro, Marino},
      journal = {Journal of Computational and Applied Mathematics},
      number = {3},
      pages = {341--350},
      title = {{Parallel algorithms for initial-value problems for difference and differential equations}},
      url = {http://dx.doi.org/10.1016/0377-0427(89)90037-X},
      volume = {25},
      year = {1989}
    }
    
  10. E. Gallopoulos and Y. Saad, “On the Parallel Solution of Parabolic Equations,” in Proceedings of the 3rd International Conference on Supercomputing, New York, NY, USA, 1989, pp. 17–28 [Online]. Available at: http://doi.acm.org/10.1145/318789.318793
    @inproceedings{GallopoulosEtAl1989,
      author = {Gallopoulos, E. and Saad, Y.},
      title = {On the Parallel Solution of Parabolic Equations},
      booktitle = {Proceedings of the 3rd International Conference on Supercomputing},
      series = {ICS '89},
      year = {1989},
      isbn = {0-89791-309-4},
      location = {Crete, Greece},
      pages = {17--28},
      numpages = {12},
      url = {http://doi.acm.org/10.1145/318789.318793},
      doi = {10.1145/318789.318793},
      acmid = {318793},
      publisher = {ACM},
      address = {New York, NY, USA}
    }
    
top